10 research outputs found

    Essential C-Terminal region of the baculovirus minor capsid protein VP80 binds DNA

    Get PDF
    The essential Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) minor capsid protein VP80 has been recently shown to interact with the virus-triggered, nuclear F-actin cytoskeleton. A role for VP80 in virus morphogenesis has been proposed in the maturation of progeny nucleocapsids and in their egress from the virogenic stroma toward the nuclear periphery by a mechanism, which also includes F-actin filaments. We performed functional mapping of VP80 demonstrating that its highly conserved C-terminal region plays a crucial role in virion morphogenesis. Protein database mining identified a putative basic helix-loop-helix (bHLH) domain, a DNA-binding module typical for eukaryotic transcription factors, in the essential C-terminal region of VP80. Using a molecular modeling approach, we predicted the three-dimensional structure of this domain, revealing some unique properties. Biochemical assays proved that VP80 can form homodimers, a critical prerequisite of DNA-binding bHLH proteins. The ability of VP80 to bind DNA was subsequently confirmed by an electrophoretic mobility shift assay. We further show that AcMNPV DNA replication occurs in the absence of VP80. Immunolabeling of VP80 in baculovirus-infected cells rather points toward its involvement in nucleocapsid maturation. The competence of VP80 to interact with both F-actin and DNA provides novel insight into baculovirus morphogenesis

    Serum-free Influenza Vaccine Production with MDCK Cells in Wave-bioreactor and 5L-stirred Tank Bioreactor

    No full text

    Improved baculovirus expression systems

    No full text
    The present invention relates to an optimized baculovirus construct useful for the production of virus ( like) particles or viral vectors in particular viral vectors for gene therapy

    Engineering of Baculovirus Vectors for the Manufacture of Virion-Free Biopharmaceuticals

    No full text
    A novel baculovirus-based protein expression strategy was developed to produce recombinant proteins in insect cells without contaminating baculovirus virions. This novel strategy greatly simplifies the downstream processing of biopharmaceuticals produced in insect cells. The formation of these virions is prevented by deletion of a baculovirus gene essential for virion formation. The deletion is trans-complemented in a transgenic insect cell line in which the baculovirus seed stock is produced. The Autographa californica multicapsid nucleopolyhedrovirus vp80 gene was selected for this purpose, as absence of VP80 prevented the formation of budded virus as well as occlusion-derived virus, while foreign gene expression was not affected. Sf9 insect cells were engineered to functionally complement the vp80 deletion in the expression vector virus during seed stock production. The trans-complemented vp80-deletion baculovirus seed produced an amount of recombinant protein similar to that produced with conventional baculovirus vectors but without contaminating virions

    Baculovirus VP1054 Is an Acquired Cellular PURa, a Nucleic Acid-Binding Protein Specific for GGN Repeats

    No full text
    Baculovirus VP1054 protein is a structural component of both of the virion types budded virus (BV) and occlusion-derived virus (ODV), but its exact role in virion morphogenesis is poorly defined. In this paper, we reveal sequence and functional similarity between the baculovirus protein VP1054 and the cellular purine-rich element binding protein PUR-alpha (PURa). The data strongly suggest that gene transfer has occurred from a host to an ancestral baculovirus. Deletion of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp1054 gene completely prevented viral cell-to-cell spread. Electron microscopy data showed that assembly of progeny nucleocapsids is dramatically reduced in the absence of VP1054. More precisely, VP1054 is required for proper viral DNA encapsidation, as deduced from the formation of numerous electron-lucent capsid-like tubules. Complementary searching identified the presence of genetic elements composed of repeated GGN trinucleotide motifs in baculovirus genomes, the target sequence for PURa proteins. Interestingly, these GGN-rich sequences are disproportionally distributed in baculoviral genomes and mostly occurred in proximity to the gene for the major occlusion body protein polyhedrin. We further demonstrate that the VP1054 protein specifically recognizes these GGN-rich islands, which at the same time encode crucial proline-rich domains in p78/83, an essential gene adjacent to the polyhedrin gene in the AcMNPV genome. While some viruses, like human immunodeficiency virus type 1 (HIV-1) and human JC virus (JCV), utilize host PURa protein, baculoviruses encode the PURa-like protein VP1054, which is crucial for viral progeny production

    Initiative to manufacture and characterize Baculovirus Reference Material

    No full text
    This letter to the editor brings to the attention of researchers an initiative to develop a baculovirus reference material repository. To be successful this initiative needs the support of a broad panel of researchers working with baculovirus vectors for recombinant protein production and gene delivery for either therapy or vaccination. First there is a need to reach a consensus on the nature of the reference material, the production protocols and the baculovirus characterization methods. It will also be important to define repository and distribution procedures so that the reference material is available to any researcher for calibrating experimental data and to compare experiments performed in the various laboratories. As more and more baculovirus-based products are licensed or in the final stages of development, the development of a repository of baculovirus reference material is timely. This letter describes the requirements for the reference material and for the project as a whole to be successful and calls for a partnership that would involve academic, industrial laboratories and governmental organizations to support this international initiativ

    Guidance for Removal of Fetal Bovine Serum from Cryopreserved Heart Valve Processing

    No full text
    Bovine serum is commonly used in cryopreservation of allogeneic heart valves; however, bovine serum carries a risk of product adulteration by contamination with bovine-derived infectious agents. In this study, we compared fresh and cryopreserved porcine valves that were processed by 1 of 4 cryopreservation formulations, 3 of which were serum-free and 1 that utilized bovine serum with 1.4 M dimethylsulfoxide. In the first serum-free group, bovine serum was simply removed from the cryopreservation formulation. The second serum-free formulation had a higher cryoprotectant concentration, i.e. 2 M dimethylsulfoxide, in combination with a serum-free solution. A colloid, dextran 40, was added to the third serum-free group with 2 M dimethylsulfoxide due to theoretical concerns that removal of serum might increase the incidence of tissue cracking. Upon rewarming, the valves were inspected and subjected to a battery of tests. Gross pathology revealed conduit cracking in 1 of 98 frozen heart valves. Viability data for the cryopreserved groups versus the fresh group demonstrated a loss of viability in half of the comparisons (p < 0.05). No significant differences were observed between any of the cryopreserved groups, with or without bovine serum. Neither routine histology, autofluorescence-based multiphoton imaging nor semiquantitative second-harmonic generation microscopy of extracellular matrix components revealed any statistically significant differences. Biomechanics analyses also revealed no significant differences. Our results demonstrate that bovine serum can be safely removed from heart valve processing and that a colloid to prevent cracking was not required. This study provides guidance for the assessment of changes in cryopreservation procedures for tissues

    Quellen- und Literaturverzeichnis

    No full text
    corecore