6,612 research outputs found
Larval Ecology of Some Lower Michigan Black Flies (Diptera: Simuliidae) With Keys to the Immature Stages
The species composition, succession, and seasonal abundance of -immature simuliids ocmrrhg in the Rose Lake Wildlife Research Area in lower Michigan are presented. Selected physical and chemical characteristics of streams in the above area were examined and compared in relation to faunal distributions. Comparisons of species differences between permanent and temporary streams were made utilizing the functional group concept based on feeding mechanisms.
Keys and illustrations are presented for the identiiication of larvae and pupae of four genera (Prosimulium, Simulium, Stegopterna, Cnephia) and 19 species of Simuliidae known to occur in lower Michigan. Two species, Cnephia ornithophilia and Simulium vemum, were recorded for the first time in Michigan
Research on new techniques for the analysis of manual control systems Progress report, 15 Dec. 1968 - 15 Jun. 1969
Decision processes of human manual controllers, neuromuscular system, and stochastic processe
Collisionless evaporation from cluster elliptical galaxies
We describe a particular aspect of the effects of the parent cluster tidal
field (CTF) on stellar orbits inside cluster Elliptical galaxies. In particular
we discuss, with the aid of a simple numerical model, the possibility that
collisionless stellar evaporation from elliptical galaxies is an effective
mechanism for the production of the recently discovered intracluster stellar
populations. A preliminary investigation, based on very idealized galaxy
density profiles (Ferrers density distributions), showed that over an Hubble
time, the amount of stars lost by a representative galaxy may sum up to the 10%
of the initial galaxy mass, a fraction in interesting agreement with
observational data. The effectiveness of this mechanism is due to the fact that
the galaxy oscillation periods near equilibrium configurations in the CTF are
comparable to stellar orbital times in the external galaxy regions. Here we
extend our previous study to more realistic galaxy density profiles, in
particular by adopting a triaxial Hernquist model.Comment: 6 pages, 2 figures. To appear on "Lecture Notes in Physics",
proceedings of the Workshop on "Galaxies and Chaos. Theory and Observations",
Athens (September 16-19, 2002), G. Contopoulos and N. Voglis, ed
Instability of the Gravitational N-Body Problem in the Large-N Limit
We use a systolic N-body algorithm to evaluate the linear stability of the
gravitational N-body problem for N up to 1.3 x 10^5, two orders of magnitude
greater than in previous experiments. For the first time, a clear ~ln
N-dependence of the perturbation growth rate is seen. The e-folding time for N
= 10^5 is roughly 1/20 of a crossing time.Comment: Accepted for publication in The Astrophysical Journa
EFFECTS OF HIGH AND LOW MANAGEMENT INTENSITY ON PROFITABILITY FOR THREE WATERMELON GENOTYPES
A replicated, small plot study on watermelon [Citrullus lanatus (Thunberg) Matsumura and Nakai] in 1997, 1999, and 2000 revealed that production management intensity affected yields and profitability of watermelon, in Oklahoma. Management intensity was based on a combination of cultural practices and levels of use of production methods. Low intensity management (LM) consisted of use of soil fertilization and weed control. High intensity management (HM) included the same weed control and fertilization as LM but also included use of plastic mulch, drip irrigation, insect pest control, and plant disease control. Cost and return analyses were based on the range of actual prices during the cropping season and the range of yields during the three years. Yields from the seedless triploid genotype 'Gem Dandy' consistently resulted in greater positive net revenue under HM than the diploid open pollinated 'Allsweet' or the hybrid diploid 'Sangria'. Under LM, yields from the seedless triploid also resulted in greater net revenues when conditions were favorable or lost less money than the open pollinated 'Allsweet' or the hybrid diploid 'Sangria' when conditions were unfavorable.Crop Production/Industries,
FAST: A multi-processed environment for visualization of computational fluid dynamics
Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed
Chaotic mixing in noisy Hamiltonian systems
This paper summarises an investigation of the effects of low amplitude noise
and periodic driving on phase space transport in 3-D Hamiltonian systems, a
problem directly applicable to systems like galaxies, where such perturbations
reflect internal irregularities and.or a surrounding environment. A new
diagnsotic tool is exploited to quantify how, over long times, different
segments of the same chaotic orbit can exhibit very different amounts of chaos.
First passage time experiments are used to study how small perturbations of an
individual orbit can dramatically accelerate phase space transport, allowing
`sticky' chaotic orbits trapped near regular islands to become unstuck on
suprisingly short time scales. Small perturbations are also studied in the
context of orbit ensembles with the aim of understanding how such
irregularities can increase the efficacy of chaotic mixing. For both noise and
periodic driving, the effect of the perturbation scales roughly in amplitude.
For white noise, the details are unimportant: additive and multiplicative noise
tend to have similar effects and the presence or absence of a friction related
to the noise by a Fluctuation- Dissipation Theorem is largely irrelevant.
Allowing for coloured noise can significantly decrease the efficacy of the
perturbation, but only when the autocorrelation time, which vanishes for white
noise, becomes so large that t here is little power at frequencies comparable
to the natural frequencies of the unperturbed orbit. This suggests strongly
that noise-induced extrinsic diffusion, like modulational diffusion associated
with periodic driving, is a resonance phenomenon. Potential implications for
galaxies are discussed.Comment: 15 pages including 18 figures, uses MNRAS LaTeX macro
Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus
Background: Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton
FAST: A multi-processed environment for visualization of computational fluid
Three dimensional, unsteady, multizoned fluid dynamics simulations over full scale aircraft is typical of problems being computed at NASA-Ames on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10 to 30 Mflop range, it is felt that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These large, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this time. These visualization techniques will change as the supercomputing environment, and hence the scientific methods used, evolve ever further. Visualization of computational aerodynamics require flexible, extensible, and adaptable software tools for performing analysis tasks. FAST (Flow Analysis Software Toolkit), an implementation of a software system for fluid mechanics analysis that is based on this approach is discussed
Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)
Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described
- …