3,960 research outputs found

    How linear features alter predator movement and the functional\ud response

    Get PDF
    In areas of oil and gas exploration, seismic lines have been reported to alter the movement patterns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on an anisotropic elliptic partial differential equation, and used this to explore how wolf movement responses to seismic lines influence the encounter rate of the wolves with their prey. The model was parametrized using 5 min GPS location data. These data showed that wolves travelled faster on seismic lines and had a higher probability of staying on a seismic line once they were on it. We simulated wolf movement on a range of seismic line densities and drew implications for the rate of predator–prey interactions as described by the functional response. The functional response exhibited a more than linear increase with respect to prey density (type III) as well as interactions with seismic line density. Encounter rates were significantly higher in landscapes with high seismic line density and were most pronounced at low prey densities. This suggests that prey at low population densities are at higher risk in environments with a high seismic line density unless they learn to avoid them

    Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    Get PDF
    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults

    An improved cell-volume analyzer

    Get PDF
    Design and operation of cell-volume analyzer friction, glaze ice, and studded tire effects on highway

    An inquiry-based learning approach to teaching information retrieval

    Get PDF
    The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal

    Structured evaluation of virtual environments for special-needs education

    Get PDF
    This paper describes the development of a structured approach to evaluate experiential and communication virtual learning environments (VLEs) designed specifically for use in the education of children with severe learning difficulties at the Shepherd special needs school in Nottingham, UK. Constructivist learning theory was used as a basis for the production of an evaluation framework, used to evaluate the design of three VLEs and how they were used by students with respect to this learning theory. From an observational field study of student-teacher pairs using the VLEs, 18 behaviour categories were identified as relevant to five of the seven constructivist principles defined by Jonassen (1994). Analysis of student-teacher behaviour was used to provide support for, or against, the constructivist principles. The results show that the three VLEs meet the constructivist principles in very different ways and recommendations for design modifications are put forward

    Andreev Reflection and Spin Injection into ss- and dd-wave Superconductors

    Full text link
    We study the effect of spin injection into ss- and dd-wave superconductors, with an emphasis on the interplay between boundary and bulk spin transport properties. The quantities of interest include the amount of non-equilibrium magnetization (mm), as well as the induced spin-dependent current (IsI_s) and boundary voltage (VsV_s). In general, the Andreev reflection makes each of the three quantities depend on a different combination of the boundary and bulk contributions. The situation simplifies either for half-metallic ferromagnets or in the strong barrier limit, where both VsV_s and mm depend solely on the bulk spin transport/relaxation properties. The implications of our results for the on-going spin injection experiments in high TcT_c cuprates are discussed.Comment: 4 pages, REVTEX, 1 figure included; typos correcte

    The Continuing Slow Decline of AG Pegasi

    Full text link
    We analyze optical and ultraviolet observations of the symbiotic binary AG Pegasi acquired during 1992-97. The bolometric luminosity of the hot component declined by a factor of 2-3 from 1980-1985 to 1997. Since 1992, the effective temperature of the hot component may have declined by 10%-20%, but this decline is comparable to the measurement errors. Optical observations of H-beta and He I emission show a clear illumination effect, where high energy photons from the hot component ionize the outer atmosphere of the red giant. Simple illumination models generally account for the magnitude of the optical and ultraviolet emission line fluxes. High ionization emission lines - [Ne V], [Mg V], and [Fe VII] - suggest mechanical heating in the outer portions of the photoionized red giant wind. This emission probably originates in a low density region \sim 30-300 AU from the central binary.Comment: 17 pages, 7 pages, 5 tables; to be published in the Astronomical Journal, July 200

    Designing electronic collaborative learning environments

    Get PDF
    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use them, sometimes very enthusiastically, but often in a perfunctory way. Finally, researchers study them and—as is usually the case when apples and oranges are compared—find no conclusive evidence as to whether or not they work, where they do or do not work, when they do or do not work and, most importantly, why, they do or do not work. This contribution presents an affordance framework for such collaborative learning environments; an interaction design procedure for designing, developing, and implementing them; and an educational affordance approach to the use of tasks in those environments. It also presents the results of three projects dealing with these three issues
    corecore