3,957 research outputs found
Apparatus for applying simulator g-forces to an arm of an aircraft simulator pilot
A device to be used with an aircraft simulator to apply positive and negative g forces to the pilot's arm is described. An arm harness fits around the arm which the pilot uses to operate the throttle. The device allows the harness to track intentional arm movements without exerting any restraining forces, and at the same time, applies g forces to to the pilots arm which are recorded by the aircraft simulator computer
Suggested hurricane operational scenario for GOES I-M
Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products
Magnetic reversals in a simple model of MHD
We study a simple magnetohydrodynamical approach in which hydrodynamics and
MHD turbulence are coupled in a shell model, with given dynamo constrains in
the large scales. We consider the case of a low Prandtl number fluid for which
the inertial range of the velocity field is much wider than that of the
magnetic field. Random reversals of the magnetic field are observed and it
shown that the magnetic field has a non trivial evolution linked to the nature
of the hydrodynamics turbulence.Comment: 4 pages, submitted to PR
A Method for Reducing the Severity of Epidemics by Allocating Vaccines According to Centrality
One long-standing question in epidemiological research is how best to
allocate limited amounts of vaccine or similar preventative measures in order
to minimize the severity of an epidemic. Much of the literature on the problem
of vaccine allocation has focused on influenza epidemics and used mathematical
models of epidemic spread to determine the effectiveness of proposed methods.
Our work applies computational models of epidemics to the problem of
geographically allocating a limited number of vaccines within several Texas
counties. We developed a graph-based, stochastic model for epidemics that is
based on the SEIR model, and tested vaccine allocation methods based on
multiple centrality measures. This approach provides an alternative method for
addressing the vaccine allocation problem, which can be combined with more
conventional approaches to yield more effective epidemic suppression
strategies. We found that allocation methods based on in-degree and inverse
betweenness centralities tended to be the most effective at containing
epidemics.Comment: 10 pages, accepted to ACM BCB 201
The non-linear transient behavior of second, third and fourth order phase-locked loops
Non-linear transient behavior of second, third, and fourth order phase-locked loop
An improved cell-volume analyzer
Design and operation of cell-volume analyzer friction, glaze ice, and studded tire effects on highway
Multi-qubit compensation sequences
The Hamiltonian control of n qubits requires precision control of both the
strength and timing of interactions. Compensation pulses relax the precision
requirements by reducing unknown but systematic errors. Using composite pulse
techniques designed for single qubits, we show that systematic errors for n
qubit systems can be corrected to arbitrary accuracy given either two
non-commuting control Hamiltonians with identical systematic errors or one
error-free control Hamiltonian. We also examine composite pulses in the context
of quantum computers controlled by two-qubit interactions. For quantum
computers based on the XY interaction, single-qubit composite pulse sequences
naturally correct systematic errors. For quantum computers based on the
Heisenberg or exchange interaction, the composite pulse sequences reduce the
logical single-qubit gate errors but increase the errors for logical two-qubit
gates.Comment: 9 pages, 5 figures; corrected reference formattin
The chromosphere: gateway to the corona, or the purgatory of solar physics?
I argue that one should attempt to understand the solar chromosphere not only
for its own sake, but also if one is interested in the physics of: the corona;
astrophysical dynamos; space weather; partially ionized plasmas; heliospheric
UV radiation; the transition region. I outline curious observations which I
personally find puzzling and deserving of attention.Comment: To appear in the proceedings of the 25th NSO Workshop "Chromospheric
Structure and Dynamics. From Old Wisdom to New Insights", Memorie della
Societa' Astronomica Italiana, Eds. Tritschler et a
Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model
Using a mean-field dynamo model with a spherically symmetric helical
turbulence parameter alpha which is dynamically quenched and disturbed by
additional noise, the basic features of geomagnetic polarity reversals are
shown to be generic consequences of the dynamo action in the vicinity of
exceptional points of the spectrum. This simple paradigmatic model yields long
periods of constant polarity which are interrupted by self-accelerating field
decays leading to asymmetric polarity reversals. It shows the recently
discovered bimodal field distribution, and it gives a natural explanation of
the correlation between polarity persistence time and field strength. In
addition, we find typical features of coherence resonance in the dependence of
the persistence time on the noise.Comment: 5 pages, 7 figure
- …