26 research outputs found

    Randomized clinical trial to evaluate the efficacy and safety of valganciclovir in a subset of patients with chronic fatigue syndrome

    Full text link
    There is no known treatment for chronic fatigue syndrome (CFS). Little is known about its pathogenesis. Human herpesvirus 6 (HHV‐6) and Epstein–Barr virus (EBV) have been proposed as infectious triggers. Thirty CFS patients with elevated IgG antibody titers against HHV‐6 and EBV were randomized 2:1 to receive valganciclovir (VGCV) or placebo for 6 months in a double‐blind, placebo‐controlled trial. Clinical endpoints aimed at measuring physical and mental fatigue included the Multidimensional Fatigue Inventory (MFI‐20) and Fatigue Severity Scale (FSS) scores, self‐reported cognitive function, and physician‐determined responder status. Biological endpoints included monocyte and neutrophil counts and cytokine levels. VGCV patients experienced a greater improvement by MFI‐20 at 9 months from baseline compared to placebo patients but this difference was not statistically significant. However, statistically significant differences in trajectories between groups were observed in MFI‐20 mental fatigue subscore ( P  = 0.039), FSS score ( P  = 0.006), and cognitive function ( P  = 0.025). VGCV patients experienced these improvements within the first 3 months and maintained that benefit over the remaining 9 months. Patients in the VGCV arm were 7.4 times more likely to be classified as responders ( P  = 0.029). In the VGCV arm, monocyte counts decreased ( P  < 0.001), neutrophil counts increased ( P  = 0.037) and cytokines were more likely to evolve towards a Th1‐profile ( P  < 0.001). Viral IgG antibody titers did not differ between arms. VGCV may have clinical benefit in a subset of CFS patients independent of placebo effect, possibly mediated by immunomodulation and/or antiviral effect. Further investigation with longer treatment duration and a larger sample size is warranted. J. Med. Virol. 85:2101–2109, 2013 . © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100139/1/jmv23713.pd

    Addressing statistical biases in nucleotide-derived protein databases for proteogenomic search strategies

    Get PDF
    [Image: see text] Proteogenomics has the potential to advance genome annotation through high quality peptide identifications derived from mass spectrometry experiments, which demonstrate a given gene or isoform is expressed and translated at the protein level. This can advance our understanding of genome function, discovering novel genes and gene structure that have not yet been identified or validated. Because of the high-throughput shotgun nature of most proteomics experiments, it is essential to carefully control for false positives and prevent any potential misannotation. A number of statistical procedures to deal with this are in wide use in proteomics, calculating false discovery rate (FDR) and posterior error probability (PEP) values for groups and individual peptide spectrum matches (PSMs). These methods control for multiple testing and exploit decoy databases to estimate statistical significance. Here, we show that database choice has a major effect on these confidence estimates leading to significant differences in the number of PSMs reported. We note that standard target:decoy approaches using six-frame translations of nucleotide sequences, such as assembled transcriptome data, apparently underestimate the confidence assigned to the PSMs. The source of this error stems from the inflated and unusual nature of the six-frame database, where for every target sequence there exists five “incorrect” targets that are unlikely to code for protein. The attendant FDR and PEP estimates lead to fewer accepted PSMs at fixed thresholds, and we show that this effect is a product of the database and statistical modeling and not the search engine. A variety of approaches to limit database size and remove noncoding target sequences are examined and discussed in terms of the altered statistical estimates generated and PSMs reported. These results are of importance to groups carrying out proteogenomics, aiming to maximize the validation and discovery of gene structure in sequenced genomes, while still controlling for false positives

    Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project

    Get PDF
    We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome

    Site-Specific Genomic Integration in Mammalian Cells Mediated by Phage φC31 Integrase

    No full text
    We previously established that the phage φC31 integrase, a site-specific recombinase, mediates efficient integration in the human cell environment at attB and attP phage attachment sites on extrachromosomal vectors. We show here that phage attP sites inserted at various locations in human and mouse chromosomes serve as efficient targets for precise site-specific integration. Moreover, we characterize native “pseudo” attP sites in the human and mouse genomes that also mediate efficient integrase-mediated integration. These sites have partial sequence identity to attP. Such sites form naturally occurring targets for integration. This phage integrase-mediated reaction represents an effective site-specific integration system for higher cells and may be of value in gene therapy and other chromosome engineering strategies

    Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice

    No full text
    Sarcopenia and exercise intolerance are major contributors to reduced quality of life in the elderly for which there are few effective treatments. We tested whether enhancing mitochondrial function and reducing mitochondrial oxidant production with SS-31 (elamipretide) could restore redox balance and improve skeletal muscle function in aged mice. Young (5 mo) and aged (26 mo) female C57BL/6Nia mice were treated for 8-weeks with 3 mg/kg/day SS-31. Mitochondrial function was assessed in vivo using 31P and optical spectroscopy. SS-31 reversed age-related decline in maximum mitochondrial ATP production (ATPmax) and coupling of oxidative phosphorylation (P/O). Despite the increased in vivo mitochondrial capacity, mitochondrial protein expression was either unchanged or reduced in the treated aged mice and respiration in permeabilized gastrocnemius (GAS) fibers was not different between the aged and aged+SS-31 mice. Treatment with SS-31 also restored redox homeostasis in the aged skeletal muscle. The glutathione redox status was more reduced and thiol redox proteomics indicated a robust reversal of cysteine S-glutathionylation post-translational modifications across the skeletal muscle proteome. The gastrocnemius in the age+SS-31 mice was more fatigue resistant with significantly greater mass compared to aged controls. This contributed to a significant increase in treadmill endurance compared to both pretreatment and untreated control values. These results demonstrate that the shift of redox homeostasis due to mitochondrial oxidant production in aged muscle is a key factor in energetic defects and exercise intolerance. Treatment with SS-31 restores redox homeostasis, improves mitochondrial quality, and increases exercise tolerance without an increase in mitochondrial content. Since elamipretide is currently in clinical trials these results indicate it may have direct translational value for improving exercise tolerance and quality of life in the elderly
    corecore