7,011 research outputs found
Detection of variations in aspen forest habitat from LANDSAT digital data: Bear River Range, Utah
The aspen forests of the Bear River Range were analyzed and mapped using data recorded on July 2, 1979 by the LANDSAT III satellite; study efforts yielded sixty-seven light signatures for the study area, of which three groups were identified as aspen and mapped at a scale of 1:24,000. Analysis and verification of the three groups were accomplished by random location of twenty-six field study plots within the LANDSAT-defined aspen areas. All study plots are included within the Cache portion of the Wasatch-Cache National Forest. The following selected site characteristics were recorded for each study plot: a list of understory species present; average percent cover density for understory species; aspen canopy cover estimates and stem measurements; and general site topographic characteristics. The study plot data were then analyzed with respect to corresponding Landsat spectral signatures. Field studies show that all twenty-six study plots are associated with one of the three aspen groups. Further study efforts concentration on characterizing the differences between the site characteristics of plots falling into each of the three aspen groups
Detection of aspen/conifer forest mixes from multitemporal LANDSAT digital data
Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using LANDSAT multispectral scanner (MSS) data. The digital MSS data were utilized to devise quantitative indices which correlate with apparently stable and seral aspen forests. The extent to which a two-date LANDSAT MSS analysis may permit the delineation of different categories of aspen/conifer forest mix was explored. Multitemporal analyses of MSS data led to the identification of early, early to mid, mid to late, and late seral stages of aspen/conifer forest mixing
Detecting agricultural to urban land use change from multi-temporal MSS digital data
Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale
An integrated LANDSAT/ancillary data classification of desert rangeland
Range inventorying methods using LANDSAT MSS data, coupled with ancillary data were examined. The study area encompassed nearly 20,000 acres in Rush Valley, Utah. The vegetation is predominately desert shrub and annual grasses, with some annual forbs. Three LANDSAT scenes were evaluated using a Kauth-Thomas brightness/greenness data transformation (May, June, and August dates). The data was classified using a four-band maximum-likelihood classifier. A print map was taken into the field to determine the relationship between print symbols and vegetation. It was determined that classification confusion could be greatly reduced by incorporating geomorphic units and soil texture (coarse vs fine) into the classification. Spectral data, geomorphic units, and soil texture were combined in a GIS format to produce a final vegetation map identifying 12 vegetation types
Cyclic cycle systems of the complete multipartite graph
In this paper, we study the existence problem for cyclic -cycle
decompositions of the graph , the complete multipartite graph with
parts of size , and give necessary and sufficient conditions for their
existence in the case that
First-Order Phase Transition in Potts Models with finite-range interactions
We consider the -state Potts model on , , ,
with Kac ferromagnetic interactions and scaling parameter \ga. We prove the
existence of a first order phase transition for large but finite potential
ranges. More precisely we prove that for \ga small enough there is a value of
the temperature at which coexist Gibbs states. The proof is obtained by a
perturbation around mean-field using Pirogov-Sinai theory. The result is valid
in particular for , Q=3, in contrast with the case of nearest-neighbor
interactions for which available results indicate a second order phase
transition. Putting both results together provides an example of a system which
undergoes a transition from second to first order phase transition by changing
only the finite range of the interaction.Comment: Soumis pour publication a Journal of statistical physics - version
r\'{e}vis\'{e}
Making the Grade:Do International Branch Campuses and Their Home Campuses Differ in International Student Satisfaction With the Academic Experience?
This study investigates differences in academic satisfaction among undergraduate international students studying at international branch campuses (IBCs) and their home campuses, considering student stage of study, gender, and institution. It draws on data from 2,145 undergraduate international students enrolled at four home campuses and their six affiliated IBCs that responded to the 2018 International Student Barometer (ISB). Results indicate that international students studying at IBCs were significantly less satisfied with their academic experience-including constructs of academic and teaching quality, academic environment, and academic engagement-than international students studying at the associated home campuses. Results have important implications for how institutions carry out internationalization amid uncertain times; in particular, ensuring that the unique experiences of students are understood and considered in the planning and provision of transnational education
Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles
In this paper we study a continuum version of the Potts model. Particles are
points in R^d, with a spin which may take S possible values, S being at least
3. Particles with different spins repel each other via a Kac pair potential. In
mean field, for any inverse temperature there is a value of the chemical
potential at which S+1 distinct phases coexist. For each mean field pure phase,
we introduce a restricted ensemble which is defined so that the empirical
particles densities are close to the mean field values. Then, in the spirit of
the Dobrushin Shlosman theory, we get uniqueness and exponential decay of
correlations when the range of the interaction is large enough. In a second
paper, we will use such a result to implement the Pirogov-Sinai scheme proving
coexistence of S+1 extremal DLR measures.Comment: 72 pages, 1 figur
A Novel Hierarchy of Integrable Lattices
In the framework of the reduction technique for Poisson-Nijenhuis structures,
we derive a new hierarchy of integrable lattice, whose continuum limit is the
AKNS hierarchy. In contrast with other differential-difference versions of the
AKNS system, our hierarchy is endowed with a canonical Poisson structure and,
moreover, it admits a vector generalisation. We also solve the associated
spectral problem and explicity contruct action-angle variables through the
r-matrix approach.Comment: Latex fil
- …