28 research outputs found

    Aportación al conocimiento de los melojares relictos de Quercus pyrenaica de la Sierra de Espadán (Castellón, España)

    Full text link
    [EN] The Espadán Mountains are one of the rare siliceous outcrops of the Valencian Community. In the most humid microclimatic locations, relict fragmented forests of Quercus pyrenaica Willd. develop. In the present work, the vegetation of these forests and their edges is studied and their floristic peculiarities are highlighted.[ES] La Sierra de Espadán es uno de los escasos afloramientos silíceos de la Comunidad Valenciana. En las situaciones microclimáticas más húmedas se desarrollan masas fragmentadas relictas de melojo (Quercus pyrenaica Willd.). En el presente trabajo se estudia la vegetación de estas masas y sus orlas y se destaca sus particularidades florísticas.Merle Farinós, HB.; Ferriol Molina, M. (2008). Aportación al conocimiento de los melojares relictos de Quercus pyrenaica de la Sierra de Espadán (Castellón, España). Lazaroa. 29:125-128. http://hdl.handle.net/10251/91886S1251282

    Los componentes alfa, beta y gamma de la biodiversidad. Aplicación al estudio de comunidades vegetales

    Full text link
    En este artículo docente se explican los conceptos de alfa- beta y gamma- diversidad en el contexto del estudio de las comunidades vegetales de un paisaje o de una zona geográfica determinada. Además, se dan unas pautas para estimar cada uno de estos componentes a partir de índices de biodiversidad.Ferriol Molina, M.; Merle Farinós, HB. (2012). Los componentes alfa, beta y gamma de la biodiversidad. Aplicación al estudio de comunidades vegetales. http://hdl.handle.net/10251/1628

    El Inventario Fitosociológico

    Full text link
    En este artículo se explica que es un inventario fitosociológico, cómo se realiza el inventario fitosociológico en campo, y cómo se puede trabajar con los inventarios fitosociológicos para realizar estudios de vegetación.Merle Farinós, HB.; Ferriol Molina, M. (2012). El Inventario Fitosociológico. http://hdl.handle.net/10251/1681

    Vegetation change over a period of 46 years in a Mediterranean mountain massif (Penyagolosa, Spain)

    Full text link
    [EN] Questions The Mediterranean mountain massifs are biodiversity hotspots threatened by climate change and land use transformations, among other factors. Did vegetation composition and alpha- and beta-diversities change in mid- and high-elevation Mediterranean ecosystems over the last 46 years? Can these changes be explained by climate change or land use? Location Medium and high altitudes of the Penyagolosa Massif, Castellon, Eastern Spain. Methods In 2014, we resurveyed 92 vegetation plots sampled in 1968, belonging to nine plant communities distributed on basic and acid soils. We performed estimates of alpha- and beta-diversity, multidimensional ordination of species composition, ecological characterisation of species and non-parametric tests to identify vegetation change over time. Results We observed different patterns of vegetation change depending on the plant community; an increase in alpha-diversity, especially in high-altitude habitats, and a homogenisation of species composition among plant communities. Seral communities and forests increased particularly in locations on basic soils that used to be occupied by pastures and communities of degraded successional stages. Higher Ellenberg indicator values of temperature and light, and loss of temperate taxa, which are usually rare in the region, were found in the climax forest of high altitudes and some acidophilous communities. However, altitudinal shifts of species distributions were detected only in 14% of plant species, both upwards and downwards. An increase of nitrophily at medium altitudes was also observed. Conclusions The results suggested that land use change related with abandonment of agro-sylvo-pastoral systems was the major driving force of vegetation dynamics in most of the seral plant communities, while thermophilisation was more evident in the high-altitude climax forest.Merle Farinós, HB.; Garmendia, A.; Hernández, H.; Ferriol Molina, M. (2020). Vegetation change over a period of 46 years in a Mediterranean mountain massif (Penyagolosa, Spain). Applied Vegetation Science. 23(4):495-507. https://doi.org/10.1111/avsc.12507S495507234Aguillaume, L., Rodrigo, A., & Avila, A. (2016). Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest. Science of The Total Environment, 544, 919-928. doi:10.1016/j.scitotenv.2015.12.017Anderson, M. J. (2005). Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics, 62(1), 245-253. doi:10.1111/j.1541-0420.2005.00440.xAnderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9(6), 683-693. doi:10.1111/j.1461-0248.2006.00926.xBenito, B., Lorite, J., & Peñas, J. (2011). Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change, 108(3), 471-483. doi:10.1007/s10584-010-0015-3Bodin, J., Badeau, V., Bruno, E., Cluzeau, C., Moisselin, J.-M., Walther, G.-R., & Dupouey, J.-L. (2012). Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation? Journal of Vegetation Science, 24(2), 269-283. doi:10.1111/j.1654-1103.2012.01456.xBonet, A., & G. Pausas, J. (2004). Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecology formerly `Vegetatio’, 174(2), 257-270. doi:10.1023/b:vege.0000049106.96330.9cBraun-Blanquet, J. (1964). Pflanzensoziologie. doi:10.1007/978-3-7091-8110-2Cannone, N., & Pignatti, S. (2014). Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change, 123(2), 201-214. doi:10.1007/s10584-014-1065-8Chytrý, M., Tichý, L., Hennekens, S. M., & Schaminée, J. H. J. (2013). Assessing vegetation change using vegetation-plot databases: a risky business. Applied Vegetation Science, 17(1), 32-41. doi:10.1111/avsc.12050Chrenková, K., Mataix-Solera, J., Dlapa, P., & Arcenegui, V. (2014). Long-term changes in soil aggregation comparing forest and agricultural land use in different Mediterranean soil types. Geoderma, 235-236, 290-299. doi:10.1016/j.geoderma.2014.07.025Clavero, M., Villero, D., & Brotons, L. (2011). Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate? PLoS ONE, 6(4), e18581. doi:10.1371/journal.pone.0018581Cuesta, B., Villar-Salvador, P., Puértolas, J., Rey Benayas, J. M., & Michalet, R. (2010). Facilitation ofQuercus ilexin Mediterranean shrubland is explained by both direct and indirect interactions mediated by herbs. Journal of Ecology, 98(3), 687-696. doi:10.1111/j.1365-2745.2010.01655.xEvangelista, A., Frate, L., Carranza, M. L., Attorre, F., Pelino, G., & Stanisci, A. (2016). Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years. AoB Plants, 8, plw004. doi:10.1093/aobpla/plw004Fernández Calzado, M. R., & Molero, J. (2013). Changes in the summit flora of a Mediterranean mountain (Sierra Nevada, Spain) as a possible effect of climate change. LAZAROA, 34(1), 65-75. doi:10.5209/rev_laza.2013.v34.n1.41523Frate, L., Carranza, M. L., Evangelista, A., Stinca, A., Schaminée, J. H. J., & Stanisci, A. (2018). Climate and land use change impacts on Mediterranean high-mountain vegetation in the Apennines since the 1950s. Plant Ecology & Diversity, 11(1), 85-96. doi:10.1080/17550874.2018.1473521Geri, F., Amici, V., & Rocchini, D. (2010). Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370-379. doi:10.1016/j.apgeog.2009.10.006Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., … Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111-115. doi:10.1038/nclimate1329Guiot, J., & Cramer, W. (2016). Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science, 354(6311), 465-468. doi:10.1126/science.aah5015Hédl, R., Bernhardt-Römermann, M., Grytnes, J.-A., Jurasinski, G., & Ewald, J. (2017). Resurvey of historical vegetation plots: a tool for understanding long-term dynamics of plant communities. Applied Vegetation Science, 20(2), 161-163. doi:10.1111/avsc.12307Jiménez-Alfaro, B., Gavilán, R. G., Escudero, A., Iriondo, J. M., & Fernández-González, F. (2014). Decline of dry grassland specialists in Mediterranean high-mountain communities influenced by recent climate warming. Journal of Vegetation Science, 25(6), 1394-1404. doi:10.1111/jvs.12198Kapfer, J., Hédl, R., Jurasinski, G., Kopecký, M., Schei, F. H., & Grytnes, J.-A. (2016). Resurveying historical vegetation data - opportunities and challenges. Applied Vegetation Science, 20(2), 164-171. doi:10.1111/avsc.12269Kelly, A. E., & Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33), 11823-11826. doi:10.1073/pnas.0802891105Lenoir, J., Gégout, J. C., Dupouey, J. L., Bert, D., & Svenning, J.-C. (2010). Forest plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland). Journal of Vegetation Science, 21(5), 949-964. doi:10.1111/j.1654-1103.2010.01201.xMagurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A., Scott, E. M., … Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology & Evolution, 25(10), 574-582. doi:10.1016/j.tree.2010.06.016Malavasi, M., Carranza, M. L., Moravec, D., & Cutini, M. (2018). Reforestation dynamics after land abandonment: a trajectory analysis in Mediterranean mountain landscapes. Regional Environmental Change, 18(8), 2459-2469. doi:10.1007/s10113-018-1368-9Matson, P., Lohse, K. A., & Hall, S. J. (2002). The Globalization of Nitrogen Deposition: Consequences for Terrestrial Ecosystems. AMBIO: A Journal of the Human Environment, 31(2), 113-119. doi:10.1579/0044-7447-31.2.113Millán, M. M., Estrela, M. J., & Miró, J. (2005). Rainfall Components: Variability and Spatial Distribution in a Mediterranean Area (Valencia Region). Journal of Climate, 18(14), 2682-2705. doi:10.1175/jcli3426.1Miró, J. J., Estrela, M. J., Caselles, V., & Olcina-Cantos, J. (2016). Fine-scale estimations of bioclimatic change in the Valencia region, Spain. Atmospheric Research, 180, 150-164. doi:10.1016/j.atmosres.2016.05.020Miró Pérez, J. J., Estrela Navarro, M. J., & Olcina Cantos, J. (2015). Statistical downscaling and attribution of air temperature change patterns in the Valencia region (1948–2011). Atmospheric Research, 156, 189-212. doi:10.1016/j.atmosres.2015.01.003Mouillot, F., Rambal, S., & Joffre, R. (2002). Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology, 8(5), 423-437. doi:10.1046/j.1365-2486.2002.00494.xBravo, D. N., Araújo, M. B., Lasanta, T., & Moreno, J. I. L. (2008). Climate Change in Mediterranean Mountains during the 21st Century. AMBIO: A Journal of the Human Environment, 37(4), 280-285. doi:10.1579/0044-7447(2008)37[280:ccimmd]2.0.co;2Ochoa-Hueso, R., Allen, E. B., Branquinho, C., Cruz, C., Dias, T., Fenn, M. E., … Stock, W. D. (2011). Nitrogen deposition effects on Mediterranean-type ecosystems: An ecological assessment. Environmental Pollution, 159(10), 2265-2279. doi:10.1016/j.envpol.2010.12.019Palombo, C., Chirici, G., Marchetti, M., & Tognetti, R. (2013). Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 147(1), 1-11. doi:10.1080/11263504.2013.772081Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., … Grabherr, G. (2012). Recent Plant Diversity Changes on Europe’s Mountain Summits. Science, 336(6079), 353-355. doi:10.1126/science.1219033Pausas, J. G., & Millán, M. M. (2019). Greening and Browning in a Climate Change Hotspot: The Mediterranean Basin. BioScience, 69(2), 143-151. doi:10.1093/biosci/biy157Peco, B., Sánchez, A. M., & Azcárate, F. M. (2006). Abandonment in grazing systems: Consequences for vegetation and soil. Agriculture, Ecosystems & Environment, 113(1-4), 284-294. doi:10.1016/j.agee.2005.09.017Rivas-Martínez, S., Penas, Á., del Río, S., Díaz González, T. E., & Rivas-Sáenz, S. (2017). Bioclimatology of the Iberian Peninsula and the Balearic Islands. Plant and Vegetation, 29-80. doi:10.1007/978-3-319-54784-8_2Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H. S., Schmitz, M. F., & Pineda, F. D. (2011). Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39(1), 162-176. doi:10.1111/j.1365-2699.2011.02592.xSANZ-ELORZA, M. (2003). Changes in the High-mountain Vegetation of the Central Iberian Peninsula as a Probable Sign of Global Warming. Annals of Botany, 92(2), 273-280. doi:10.1093/aob/mcg130Sirami, C., Nespoulous, A., Cheylan, J.-P., Marty, P., Hvenegaard, G. T., Geniez, P., … Martin, J.-L. (2010). Long-term anthropogenic and ecological dynamics of a Mediterranean landscape: Impacts on multiple taxa. Landscape and Urban Planning, 96(4), 214-223. doi:10.1016/j.landurbplan.2010.03.007Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., … Barni, E. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556(7700), 231-234. doi:10.1038/s41586-018-0005-6Stöckli, V., Wipf, S., Nilsson, C., & Rixen, C. (2011). Using historical plant surveys to track biodiversity on mountain summits. Plant Ecology & Diversity, 4(4), 415-425. doi:10.1080/17550874.2011.651504Van Hall, R. L., Cammeraat, L. H., Keesstra, S. D., & Zorn, M. (2017). Impact of secondary vegetation succession on soil quality in a humid Mediterranean landscape. CATENA, 149, 836-843. doi:10.1016/j.catena.2016.05.021Zobel, K., Zobel, M., & Peet, R. K. (1993). Change in pattern diversity during secondary succession in Estonian forests. Journal of Vegetation Science, 4(4), 489-498. doi:10.2307/323607

    Effect of freezing conservation time on loquat (Eriobotrya japonica) pollen germination

    Get PDF
    [EN] Aim of study: Several studies point out that storage at -20 ºC is a suitable method for preserving pollen of many species in the long term. Part of those studies indicate the total storage time at which these conditions are optimal. However, we have found a lack of information about the freezing time conditions and incubation temperature of loquat pollen. The main objective of this study was to evaluate the effect of the -20 ºC conservation temperature on loquat (Eriobotrya japonica (Thunb.) Lindl.) pollen. Area of study: The study was conducted in Montserrat (Valencia, Spain). Material and methods: Loquat flowers were collected in November 2017 and stored at -20 ºC for three time periods: 4 (T1), 6 (T2) and 8 (T3) months. Subsequently, pollen grains were incubated at different temperatures for 72 h. We analyzed (i) the effect of freezing conservation time; (ii) the effect of incubation temperature on germination; (iii) the interaction between these two factors. Main results: T1 showed higher germination percentage and tube length values (mean and maximum) than T2 and T3. The highest germination percentage (52.77%) was detected for T1 at an incubation temperature of 25 ºC. The interaction between freezing time and incubation temperature showed more consistent results for T1 than for T2 and T3. Research highlights: This suggests that storing at -20 ºC for more than 4 months affects pollen grain and reduces germination and pollen growth. Therefore, -20 ºC loquat pollen storage should not exceed 4 months.Asociacion Club de Variedades Vegetales Protegidas, as a part of a project undertaken with the Universitat Politecnica de Valencia UPV-20190822.Beltrán, R.; Cebrián, N.; Zornoza, C.; Garmendia, A.; Merle Farinós, HB. (2020). Effect of freezing conservation time on loquat (Eriobotrya japonica) pollen germination. Spanish Journal of Agricultural Research. 18(3):1-10. https://doi.org/10.5424/sjar/2020183-16626S110183Acar I, Kakani VG, 2010. The effects of temperature on in vitro pollen germination and pollen tube growth of Pistacia spp. Sci Hort 125 (4): 569-572.Agustí M, 2010. Fruticultura. Mundi-Prensa Libros. Madrid, Spain. 507 pp.Ahmed S, Rattanpal HS, Ahmad E, Singh G, 2017. Influence of storage duration and storage temperature on in-vitro pollen germination of Citrus species. Int J Curr Microbiol Appl Sci 6 (5): 892-902.Beltrán R, Valls A, Cebrián N, Zornoza C, García Breijo F, Reig Armiñana J, Garmendia A, Merle H, 2019. Effect of temperature on pollen germination for several Rosaceae species: influence of freezing conservation time on germination patterns. Peer J 7: e8195.Blasco M, Badenes ML, Naval MM, 2016. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production. Breed Sci 66 (4): 606-612.Bolat İ, Pirlak L, 1999. An investigation on pollen viability, germination and tube growth in some stone fruits. Turk J Agric For 23 (4): 383-388.Brewbaker JL, Kwack BH, 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50: 859-865.Caballero P, Fernández MA, 2002. Loquat, production and market. Opt Med 58: 11-20.Carrera L, Sanzol J, Herrero M, Hormaza JI, 2009. Genomic characterization of self-incompatibility ribonucleases (S-RNases) in loquat (Eriobotrya japonica Lindl.) (Rosaceae, Pyrinae). Mol Breeding 23 (4): 539.Cerović R, Ružić D, 1992. Pollen tube growth in sour cherry (Prunus cerasus L.) at different temperatures. J Hortic Sci 67 (3): 333-340.Cuevas J, Hueso JJ, Puertas M, 2003. Pollination requirements of loquat (Eriobotrya japonica Lindl.), cv.Algerie'. Fruits 58 (3): 157-165.Demirkeser TH, Caliskan O, Polat AA, Ozgen M, Serce S, 2007. Effect of natural lipid on pollen germination and pollen tube growth on loquat. Asian J Plant Sci 6 (2): 304-307.Distefano G, Hedhly A, Las Casas G, La Malfa S, Herrero M, Gentile A, 2012. Male-female interaction and temperature variation affect pollen performance in Citrus. Sci Hort 140: 1-7.Egea J, Burgos L, Zoroa N, Egea L, 1992. Influence of temperature on the in vitro germination of pollen of apricot (Prunus armeniaca L.). J Hortic Sci 67 (2): 247-250.Freihat NM, Al-Ghzawi AAM, Zaitoun S, Alqudah A, 2008. Fruit set and quality of loquats (Eriobotrya japonica) as effected by pollinations under sub-humid Mediterranean. Sci Hort 117 (1): 58-62.Germanà MA, Chiancone B, Guarda NL, Testillano PS, Risueño MC, 2006. Development of multicellular pollen of Eriobotrya japonica Lindl. through anther culture. Plant Sci 171 (6): 718-725.Hedhly A, Hormaza JI, Herrero M, 2004. Effect of temperature on pollen tube kinetics and dynamics in sweet cherry Prunus avium (Rosaceae). Am J Bot 91 (4): 558-564.Hedhly A, Hormaza JI, Herrero M, 2005. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol 7: 476-483.Kakani VG, Prasad PVV, Craufurd PQ, Wheeler TR, 2002. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ 25 (12): 1651-1661.Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR, Zhao D, 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96 (1): 59-67.Khan SA, Perveen A, 2006. Germination capacity of stored pollen of Solanum melongena L. (Solanaceae) and their maintenance. Pak J Bot 38 (4): 917-920.Khan SA, Perveen A, 2010. In vitro pollen germination capacity of Citrullus lanatus L. (Cucurbitaceae). Pak J Bot 42: 681-684.Khan SA, Perveen A, 2011. Pollen germination capacity and viability in Lagenaria siceraria (Molina) Standley (Cucurbitaceae). Pak J Bot 43 (2): 827-830.Khan SA, Perveen A, 2014. In vitro pollen germination of five citrus species. Pak J Bot 46 (3): 951-956.Köppen W, Geiger R, 1936. Das Geographische System der Klimate. Borntraeger Science Publishers. BerlinMendiburu F, 2019. Agricolae: Statistical procedures for agricultural research. R package version 1.3-0. https://CRAN.R-project.org/package=agricolae.Mesejo C, Martínez-Fuentes A, Reig C, Rivas F, Agustí M, 2006. The inhibitory effect of CuSO4 on Citrus pollen tuve growth and its application for the production of seedless fruit. Plant Sci 170: 37-43.Perveen A, Khan SA, 2008. Maintenance of pollen germination capacity of Malus pumila L. (Rosaceae). Pak J Bot 40 (3): 963-966.Pirlak L, 2002. The effects of temperature on pollen germination and pollen tube growth of apricot and sweet cherry. Gartenbauwissenschaft 67 (2): 61-64.Qin Y, Qun-Xian D, Yong-Qing W, Lu L, Yan F, Ying-Hong L, Lian T, Shi-Feng L, 2008. Study on characteristics of in situ pollen germination and pollen tube growth of loquat. Plant Sci Res 1 (3): 50-55.R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.RStudio Team, 2016. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, USA. http://www.rstudio.com/Reddy KR, Kakani VG, 2007. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci Hort 112 (2): 130-135.Reig C, Mesejo C, Martínez-Fuentes A, Agustí M. 2014. Naphthaleneacetic acid impairs ovule fertilization and early embryo development in loquat (Eriobotrya japonica Lindl.). Sci Hort 165: 246-251.Sanzol J, Herrero M, 2001. The "effective pollination period" in fruit trees. Sci Hort 90: 1-17.Seyrek UA, Qu X, Huang C, Tao J, Zhong M, Wu H, Xu X, 2016. Influence of storage time on pollen traits in Actinidia eriantha. Agric Sci 7 (6): 373.Sharafi Y, 2011. In vitro pollen germination in stone fruit tree of Rosaceae family. Afr J Agr Res 6 (28): 6021-6026.Sharafi Y, Motallebbi-Aza AR, Bahmani A, 2011. In vitro pollen germination, pollen tube growth and longevity in some genotypes of loquat (Eriobotrya japonica Lindl.). Afr J Biotechnol 10 (41): 8064-8069.Sharpe RH, 2010. Loquat: botany and horticulture. Hortic Rev 23: 233-276.Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Wolukau JN, Ercisli S, 2011. Response of in vitro pollen germination and pollen tube growth of almond (Prunus dulcis Mill.) to temperature, polyamines and polyamine synthesis inhibitor. Biochem Syst Ecol 39 (4-6): 749-757.Sorkheh K, Azimkhani R, Mehri N, Chaleshtori MH, Halász J, Ercisli S, Koubouris GC, 2018. Interactive effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Sci Hort 227: 162-168.Towil LE, 2010. Long-term pollen storage. Plant Breed Rev 13: 179-207.Vasilakakis M, Porlingis IC, 1985. Effect of temperature on pollen germination, pollen tube growth, effective pollination period, and fruit set of pear. Hortscience 20: 733-735.Weinbaum SA, Parfitt DE, Polito VS, 1984. Differential cold sensitivity of pollen grain germination in two Prunus species. Euphytica 33: 419-426.Yang Q, Fu Y, Wang YQ, Deng QX, Tao L, Yan J, Luo N, 2011. Effects of simulated rain on pollen-stigma adhesion and fertilisation in loquat (Eriobotrya japonica Lindl.). J Hortic Sci Biotech 86 (3): 221-224.Yang Q, Wang YQ, Fu Y, Deng QX, Tao L, 2012. Effects of biological factors on fruit and seed set in loquat (Eriobotrya japonica Lindl.). Afr J Agr Res 7 (38): 5303-5311

    Una nueva combinación y cambio de rango para un híbrido marroquí en Centaurea (Asteraceae).

    Full text link
    [ES] Se propone una nueva combinación y cambio de rango para el híbrido marroquí descrito como Centaurea ×subdecurrens nothosubsp. paucispina ["paucispinus"] [= C. aspera subsp. gentilii × C. seridis var. auriculata] (Asteraceae).[EN] A new combination and change in rank for the Moroccan hybrid described as Centaurea ×subdecurrens nothosubsp. paucispina [¿paucispinus¿] [= C. aspera subsp. gentilii × C. seridis var. auriculata] (Asteraceae) are proposed.Ferrer-Gallego, PP.; Merle Farinós, HB.; Ferriol Molina, M.; Garmendia, A. (2018). A new combination and change in Rank for a Moroccan hybrid in Centaurea (Asteraceae). Flora Montibérica. 71:35-37. http://hdl.handle.net/10251/136101S35377

    Mating system of Centaurea aspera (asteraceae) polyploid relatives - Short communication

    Full text link
    [EN] Centaurea aspera polyploid complex represents a comprehensive model. The aim of this short communication was to study the mating system of the three main species. The results showed that allotetraploid C. seridis was self-compatible (SC), while autotetraploid C. gentilii was self-incompatible (SI) as the diploid parental C. aspera (SI).This work was supported by Generalitat Valenciana through AICO/2019/227 project.Ferriol Molina, M.; Garmendia, A.; Benavent, D.; Ferrer-Gallego, PP.; Merle Farinós, HB. (2021). Mating system of Centaurea aspera (asteraceae) polyploid relatives - Short communication. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 155(3):415-416. https://doi.org/10.1080/11263504.2020.1852333S4154161553Bellanger, S., Guillemin, J.-P., & Darmency, H. (2014). Pseudo-self-compatibility in Centaurea cyanus L. Flora - Morphology, Distribution, Functional Ecology of Plants, 209(7), 325-331. doi:10.1016/j.flora.2014.04.002Ferriol, M., Garmendia, A., Gonzalez, A., & Merle, H. (2015). Allogamy-Autogamy Switch Enhance Assortative Mating in the Allotetraploid Centaurea seridis L. Coexisting with the Diploid Centaurea aspera L. and Triggers the Asymmetrical Formation of Triploid Hybrids. PLOS ONE, 10(10), e0140465. doi:10.1371/journal.pone.0140465Ferriol, M., Garmendia, A., Ruiz, J. J., Merle, H., & Boira, H. (2012). Morphological and molecular analysis of natural hybrids between the diploidCentaurea asperaL. and the tetraploidC. seridisL. (Compositae). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 146(sup1), 86-100. doi:10.1080/11263504.2012.727878Ferriol, M., Merle, H., & Garmendia, A. (2014). Microsatellite evidence for low genetic diversity and reproductive isolation in tetraploidCentaurea seridis(Asteraceae) coexisting with diploidCentaurea asperaand triploid hybrids in contact zones. Botanical Journal of the Linnean Society, 176(1), 82-98. doi:10.1111/boj.12194Garmendia, A., Ferriol, M., Benavent, D., Ferrer-Gallego, P. P., & Merle, H. (2020). Intra- and Inter-Specific Crosses among Centaurea aspera L. (Asteraceae) Polyploid Relatives—Influences on Distribution and Polyploid Establishment. Plants, 9(9), 1142. doi:10.3390/plants9091142Garmendia, A., Ferriol, M., Juarez, J., Zając, A., Kałużny, K., & Merle, H. (2015). A rare case of a natural contact zone in Morocco between an autopolyploid and an allopolyploid ofCentaurea asperawith sterile tetraploid hybrids. Plant Biology, 17(3), 746-757. doi:10.1111/plb.12284Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., … dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-100. doi:10.1038/nature09916Levin, D. A. (2019). Plant speciation in the age of climate change. Annals of Botany, 124(5), 769-775. doi:10.1093/aob/mcz108Soltis, D. E., Albert, V. A., Leebens-Mack, J., Bell, C. D., Paterson, A. H., Zheng, C., … Soltis, P. S. (2009). Polyploidy and angiosperm diversification. American Journal of Botany, 96(1), 336-348. doi:10.3732/ajb.080007

    Intra- and Inter-Specific Crosses among Centaurea aspera L. (Asteraceae) Polyploid Relatives-Influences on Distribution and Polyploid Establishment

    Full text link
    [EN] How polyploids become established is a long-debated question, especially for autopolyploids that seem to have no evolutionary advantage over their progenitors. The Centaurea aspera polyploid complex includes diploid C. aspera and two related tetraploids C. seridis and C. gentilii. Our purpose was to study the mating system among these three taxa and to analyze its influence on polyploid establishment. The distribution and ploidy level of the Moroccan populations, and forced intra- and inter-specific crosses were assessed. Allotetraploid C. seridis produced more cypselae per capitulum in the intra-specific crosses. It is a bigger plant and autogamous, and previous studies indicated that selfing forces the asymmetric formation of sterile hybrids. All these characteristics help C. seridis to avoid the minority-cytotype-exclusion effect and become established. Inter-specific hybridization was possible between C. aspera and C. gentilii, and with the symmetric formation of hybrids. However, 49% of the hybrid cypselae were empty, which probably reveals postzygotic barriers. Autotetraploid C. gentilii produced the same number of cypselae per capitulum as those of the diploid parental, has an indistinguishable field phenotype, is allogamous, and symmetrically produces hybrids. Therefore, C. gentilii does not seem to have the same competitive advantages as those of C. seridis.This research was funded by the Conselleria d'Educacio, Cultura i Esport (Generalitat Valenciana) with project AICO/2019/227.Garmendia, A.; Ferriol Molina, M.; Benavente, D.; Ferrer-Gallego, PP.; Merle Farinós, HB. (2020). Intra- and Inter-Specific Crosses among Centaurea aspera L. (Asteraceae) Polyploid Relatives-Influences on Distribution and Polyploid Establishment. Plants. 9(9):1-16. https://doi.org/10.3390/plants9091142S1169

    Morphologic, genetic, and biogeographic continua among subspecies hinder the conservation of threatened taxa: the case of Centaurea aspera ssp. scorpiurifolia (Asteraceae)

    Full text link
    [EN] Subspecies are widely included as conservation units because of their potential to become new species. However, their practical recognition includes variable criteria, such as morphological, genetic, geographic and other differences. Centaurea aspera ssp. scorpiurifolia is a threatened taxon endemic to Andalusia (Spain), which coexists in most of its distribution area with similar taxa. Because of the difficulty to identify it using morphology alone, we aimed to sample all the populations cited as ssp. scorpiurifolia as exhaustively as possible, morphologically characterise them, and analyse their genetic structuring using microsatellites, to better understand difficulties when conserving subspecies. Three different Centaurea species were found which were easily identified. Within C. aspera, two genetic populations and some admixed individuals were observed, one including ssp. scorpiurifolia individuals and the other including individuals identified as subspecies aspera, stenophylla, and scorpiurifolia. A morphological continuum between these two genetic populations and a wide overlapping of their biogeographic distribution were also found. This continuum can affect the conservation of ssp. scorpiurifolia because of potential misidentifications and harmful effects of subspecific hybridization. Misidentifications could be partly overcome by using as many different traits as possible, and conservation priority should be given to populations representative of the ends of this continuum.Partial financial support was received from Generalitat Valenciana [AICO/2019/227].Garmendia, A.; Merle Farinós, HB.; Sanía, M.; López Del Rincón, C.; Ferriol Molina, M. (2022). Morphologic, genetic, and biogeographic continua among subspecies hinder the conservation of threatened taxa: the case of Centaurea aspera ssp. scorpiurifolia (Asteraceae). Scientific Reports. 12(1):1-14. https://doi.org/10.1038/s41598-022-04934-411412

    A rare case of a natural contact zone in Morocco between an autopolyploid and an allopolyploid of Centaurea aspera with sterile tetraploid hybrids

    Get PDF
    This is the accepted version of the following article: Garmendia, A., Ferriol, M., Juarez, J., Zając, A., Kałużny, K., Merle, H. (2015), A rare case of a natural contact zone in Morocco between an autopolyploid and an allopolyploid of Centaurea aspera with sterile tetraploid hybrids. Plant Biology, 17: 746–757, which has been published in final form at http://dx.doi.org/10.1111/plb.12284A new contact zone between Centaurea aspera and Centaurea seridis was found in Morocco. Chromosome counts and flow cytometry showed that both taxa were tetra- ploid (4 x = 44). A literature review and morphometric analysis established that C. aspera corresponds to the autopolyploid C. aspera subsp. gentilii and C. seridis corresponds to the allopolyploid C. seridis var. auriculata. This contact area was compared with the homologous contact zones in Spain formed by the diploid C. aspera subsp. stenophylla and the tetraploid C. seridis subsp. maritima. Natural hybrids between parental species were frequent in both areas. In Spain, hybrids were triploid (from reduced gametes A and gamete AB), highly sterile and exerted a triploid block . In Morocco, cytometry showed that hybrids were tetraploid and, therefore, probably fertile, but all the capitula lacked achenes. It is likely that the resulting genome of the new tetraploid hybrid (AAAB), through the fusion of reduced gametes AA (from subsp. gentilii) and AB (from var. auriculata), could explain irregularities in meiosis through formation of aneuploid gametes and, therefore, infertility of the hybrid. Moroccan sterile tetraploid hybrids develop, but have the identical irregularities to Spanish triploids, probably due to the odd number of homologous chromosomes. The new hybrid is first described as C. x subdecurrens nothosubsp. paucispinus. In addition, distribution and ecological traits are analysedGarmendia, A.; Ferriol Molina, M.; Juarez, J.; Zajac, A.; Kaluzny, K.; Merle Farinós, HB. (2015). A rare case of a natural contact zone in Morocco between an autopolyploid and an allopolyploid of Centaurea aspera with sterile tetraploid hybrids. Plant Biology. 17(3):746-757. doi:10.1111/plb.12284S746757173Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., … Zinner, D. (2013). Hybridization and speciation. Journal of Evolutionary Biology, 26(2), 229-246. doi:10.1111/j.1420-9101.2012.02599.xAleza, P., Juárez, J., Ollitrault, P., & Navarro, L. (2009). Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Reports, 28(12), 1837-1846. doi:10.1007/s00299-009-0783-2Ball, J. (1878). Spicilegium Florae Maroccanae-Part III. Containing descriptions of Genera and Species. Umbelliferae to Gentianeae. Journal of the Linnean Society of London, Botany, 16(95), 473-568. doi:10.1111/j.1095-8339.1878.tb00104.xBlair, A. C., & Hufbauer, R. A. (2010). Hybridization and invasion: one of North Americaâ s most devastating invasive plants shows evidence for a history of interspecific hybridization. Evolutionary Applications, 3(1), 40-51. doi:10.1111/j.1752-4571.2009.00097.xBosch, J., Retana, J., & Cerdá, X. (1997). Flowering phenology, floral traits and pollinator composition in a herbaceous Mediterranean plant community. Oecologia, 109(4), 583-591. doi:10.1007/s004420050120BRETAGNOLLE, F., & THOMPSON, J. D. (1995). Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytologist, 129(1), 1-22. doi:10.1111/j.1469-8137.1995.tb03005.xCastroviejo S. Aedo C. 2014 Proyecto Anthos. Sistema de información de las plantas de España, Real jardín Botánico, CSIC - Fundación Biodiversidad Website http://www.anthos.es/Dunn, O. J. (1961). Multiple Comparisons among Means. Journal of the American Statistical Association, 56(293), 52-64. doi:10.1080/01621459.1961.10482090Ferriol, M., Garmendia, A., Ruiz, J. J., Merle, H., & Boira, H. (2012). Morphological and molecular analysis of natural hybrids between the diploidCentaurea asperaL. and the tetraploidC. seridisL. (Compositae). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 146(sup1), 86-100. doi:10.1080/11263504.2012.727878Ferriol, M., Merle, H., & Garmendia, A. (2014). Microsatellite evidence for low genetic diversity and reproductive isolation in tetraploidCentaurea seridis(Asteraceae) coexisting with diploidCentaurea asperaand triploid hybrids in contact zones. Botanical Journal of the Linnean Society, 176(1), 82-98. doi:10.1111/boj.12194Gao, J. Y., Liu, Q., & Li, Q. J. (2013). The comparative reproductive biology of a tetraploid species,Hedychium villosum, and its diploid progenitorH. tenuiflorum(Zingiberaceae). Plant Biology, 16(3), 683-689. doi:10.1111/plb.12080Garcia-Jacas, N., Soltis, P. S., Font, M., Soltis, D. E., Vilatersana, R., & Susanna, A. (2009). The polyploid series of Centaurea toletana: Glacial migrations and introgression revealed by nrDNA and cpDNA sequence analyzes. Molecular Phylogenetics and Evolution, 52(2), 377-394. doi:10.1016/j.ympev.2009.03.010Gardou, C. (2008). Recherches biosystématiques sur la Section Jacea Cass. et quelques sections voisines du genre Centaurea L. en France et dans les régions limitrophes. Feddes Repertorium, 83(5-6), 311-472. doi:10.1002/fedr.19720830502Greuter, W., & Raab-Straube, E. V. (2007). Euro+Med Notulae, 3. Willdenowia, 37(1), 139-189. doi:10.3372/wi.37.37107HARDY, O. J., VANDERHOEVEN, S., DE LOOSE, M., & MEERTS, P. (2000). Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytologist, 146(2), 281-290. doi:10.1046/j.1469-8137.2000.00631.xHardy, O. J., de Loose, M., Vekemans, X., & Meerts, P. (2001). Allozyme segregation and inter-cytotype reproductive barriers in the polyploid complex Centaurea jacea. Heredity, 87(2), 136-145. doi:10.1046/j.1365-2540.2001.00862.xHegarty, M. J., Barker, G. L., Wilson, I. D., Abbott, R. J., Edwards, K. J., & Hiscock, S. J. (2006). Transcriptome Shock after Interspecific Hybridization in Senecio Is Ameliorated by Genome Duplication. Current Biology, 16(16), 1652-1659. doi:10.1016/j.cub.2006.06.071Jackson, R. C. (1982). Polyploidy and Diploidy: New Perspectives on Chromosome Pairing and Its Evolutionary Implications. American Journal of Botany, 69(9), 1512. doi:10.2307/2443113Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., … dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-100. doi:10.1038/nature09916Koutecký, P. (2007). Morphological and ploidy level variation ofCentaurea phrygia agg. (Asteraceae) in the Czech Republic, Slovakia and Ukraine. Folia Geobotanica, 42(1), 77-102. doi:10.1007/bf02835103Koutecký, P. (2012). A diploid drop in the tetraploid ocean: hybridization and long-term survival of a singular population of Centaurea weldeniana Rchb. (Asteraceae), a taxon new to Austria. Plant Systematics and Evolution, 298(7), 1349-1360. doi:10.1007/s00606-012-0641-5KOUTECKÝ, P., BAĎUROVÁ, T., ŠTECH, M., KOŠNAR, J., & KARÁSEK, J. (2011). Hybridization between diploidCentaurea pseudophrygiaand tetraploidC. jacea(Asteraceae): the role of mixed pollination, unreduced gametes, and mentor effects. Biological Journal of the Linnean Society, 104(1), 93-106. doi:10.1111/j.1095-8312.2011.01707.xMadlung, A. (2012). Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 110(2), 99-104. doi:10.1038/hdy.2012.79Marks, G. E. (1966). The Origin and Significance of Intraspecific Polyploidy: Experimental Evidence from Solanum chacoense. Evolution, 20(4), 552. doi:10.2307/2406589Médail, F., & Quézel, P. (1999). Plant Ecology, 140(2), 221-244. doi:10.1023/a:1009775327616Mlinarec, J., Šatović, Z., Mihelj, D., Malenica, N., & Besendorfer, V. (2011). Cytogenetic and phylogenetic studies of diploid and polyploid members of Tribe Anemoninae (Ranunculaceae). Plant Biology, 14(3), 525-536. doi:10.1111/j.1438-8677.2011.00519.xMráz, P., Garcia-Jacas, N., Gex-Fabry, E., Susanna, A., Barres, L., & Müller-Schärer, H. (2012). Allopolyploid origin of highly invasive Centaurea stoebe s.l. (Asteraceae). Molecular Phylogenetics and Evolution, 62(2), 612-623. doi:10.1016/j.ympev.2011.11.006Otto, S. P. (2007). The Evolutionary Consequences of Polyploidy. Cell, 131(3), 452-462. doi:10.1016/j.cell.2007.10.022Parisod, C., Holderegger, R., & Brochmann, C. (2010). Evolutionary consequences of autopolyploidy. New Phytologist, 186(1), 5-17. doi:10.1111/j.1469-8137.2009.03142.xPisanu, S., Mameli, G., Farris, E., Binelli, G., & Filigheddu, R. (2010). A Natural Homoploid Hybrid between Centaurea horrida and Centaurea filiformis (Asteraceae) as Revealed by Morphological and Genetic Traits. Folia Geobotanica, 46(1), 69-86. doi:10.1007/s12224-010-9085-2Ramsey, J., & Schemske, D. W. (1998). PATHWAYS, MECHANISMS, AND RATES OF POLYPLOID FORMATION IN FLOWERING PLANTS. Annual Review of Ecology and Systematics, 29(1), 467-501. doi:10.1146/annurev.ecolsys.29.1.467Ramsey, J., & Schemske, D. W. (2002). Neopolyploidy in Flowering Plants. Annual Review of Ecology and Systematics, 33(1), 589-639. doi:10.1146/annurev.ecolsys.33.010802.150437Riddle, N. C., & Birchler, J. A. (2003). Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends in Genetics, 19(11), 597-600. doi:10.1016/j.tig.2003.09.005Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. Trends in Ecology & Evolution, 16(7), 351-358. doi:10.1016/s0169-5347(01)02187-5ROMASCHENKO, K., ERTUǦRUL, K., SUSANNA, A., GARCIA-JACAS, N., UYSAL, T., & ARSLAN, E. (2004). New chromosome counts in the Centaurea Jacea group (Asteraceae, Cardueae) and some related taxa. Botanical Journal of the Linnean Society, 145(3), 345-352. doi:10.1111/j.1095-8339.2004.00292.xSatina, S., Blakeslee, A. F., & Avery, A. G. (1938). Chromosome Behavior in Triploid Datura. III. The Seed. American Journal of Botany, 25(8), 595. doi:10.2307/2436519Scheiner, S. M. (1993). Genetics and Evolution of Phenotypic Plasticity. Annual Review of Ecology and Systematics, 24(1), 35-68. doi:10.1146/annurev.es.24.110193.000343Siljak-Yakovlev, S., Solic, M. E., Catrice, O., Brown, S. C., & Papes, D. (2005). Nuclear DNA Content and Chromosome Number in Some Diploid and Tetraploid Centaurea (Asteraceae: Cardueae) from the Dalmatia Region. Plant Biology, 7(4), 397-404. doi:10.1055/s-2005-865693Soltis, P. S., & Soltis, D. E. (2009). The Role of Hybridization in Plant Speciation. Annual Review of Plant Biology, 60(1), 561-588. doi:10.1146/annurev.arplant.043008.092039Španiel, S., Marhold, K., Hodálová, I., & Lihová, J. (2008). Diploid and Tetraploid Cytotypes of Centaurea stoebe (Asteraceae) in Central Europe: Morphological Differentiation and Cytotype Distribution Patterns. Folia Geobotanica, 43(2), 131-158. doi:10.1007/s12224-008-9008-7Sultan, S. E. (1987). Evolutionary Implications of Phenotypic Plasticity in Plants. Evolutionary Biology, 127-178. doi:10.1007/978-1-4615-6986-2_7Vanderhoeven, S., Hardy, O., Vekemans, X., Lefèbvre, C., de Loose, M., Lambinon, J., & Meerts, P. (2002). A Morphometric Study of Populations of the Centaurea jacea Complex (Asteraceae) in Belgium. Plant Biology, 4(3), 403-412. doi:10.1055/s-2002-32327Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. Statistics and Computing. doi:10.1007/978-0-387-21706-2Vogt, R., & Oberprieler, C. (2008). Chromosome numbers of North African phanerogams. VIII. More counts inCompositae. Willdenowia, 38(2), 497-519. doi:10.3372/wi.38.38210Xu, Y., Zhao, Q., Mei, S., & Wang, J. (2012). Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata × Brassica rapa. Plant Biology, 14(5), 734-744. doi:10.1111/j.1438-8677.2011.00553.
    corecore