203 research outputs found

    One-step refolding and purification of disulfide-containing proteins with a C-terminal MESNA thioester

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester. This uniquely reactive C-terminus can be used in native chemical ligation reactions to introduce synthetic groups or to immobilize proteins on surfaces and nanoparticles. Unfortunately, common refolding procedures for recombinant proteins that contain disulfide bonds do not preserve the thioester functionality and therefore novel refolding procedures need to be developed.</p> <p>Results</p> <p>A novel redox buffer consisting of MESNA and diMESNA showed a refolding efficiency comparable to that of GSH/GSSG and prevented loss of the protein's thioester functionality. Moreover, introduction of the MESNA/diMESNA redox couple in the cleavage buffer allowed simultaneous on-column refolding of Ribonuclease A and intein-mediated cleavage to yield Ribonuclease A with a C-terminal MESNA-thioester. The C-terminal thioester was shown to be active in native chemical ligation.</p> <p>Conclusion</p> <p>An efficient method was developed for the production of disulfide bond containing proteins with C-terminal thioesters. Introduction of a MESNA/diMESNA redox couple resulted in simultaneous on-column refolding, purification and thioester generation of the model protein Ribonuclease A.</p

    Point-of-care therapeutic drug monitoring of tumour necrosis factor-α inhibitors using a single step immunoassay

    Get PDF
    Therapeutic drug monitoring (TDM) of tumor necrosis factor-α (TNFα)-inhibitors adalimumab and infliximab is important to establish optimal drug dose and maximize treatment efficacy. Currently, TDM is primarily performed with ELISA techniques in clinical laboratories, resulting in a long sample-to-result workflow. Point-of-care (POC) detection of these therapeutic antibodies could significantly decrease turnaround times and allow for user-friendly home-testing. Here, we adapted the recently developed bioluminescent dRAPPID (dimeric Ratiometric Plug-and-Play Immunodiagnostics) sensor platform to allow POC TDM of infliximab and adalimumab. We applied the two best performing dRAPPID sensors, with limit-of-detections of 1 pM and 17 pM, to measure the infliximab and adalimumab levels in 49 and 40 patient serum samples, respectively. The analytical performance of dRAPPID was benchmarked with commercial ELISAs and yielded Pearson's correlation coefficients of 0.93 and 0.94 for infliximab and adalimumab, respectively. Furthermore, a dedicated bioluminescence reader was fabricated and used as a readout device for the TDM dRAPPID sensors. Subsequently, infliximab and adalimumab patient serum samples were measured with the TDM dRAPPID sensors and bioluminescence reader, yielding Pearson's correlation coefficients of 0.97 and 0.86 for infliximab and adalimumab, respectively, and small proportional differences with ELISA (slope was 0.97 ± 0.09 and 0.96 ± 0.20, respectively). The adalimumab and infliximab dRAPPID sensors, in combination with the dedicated bioluminescence reader, allow for ease-of-use TDM with a fast turnaround time and show potential for POC TDM outside of clinical laboratories.</p

    Turning Antibodies into Ratiometric Bioluminescent Sensors for Competition-Based Homogeneous Immunoassays

    Get PDF
    Here we present LUCOS (Luminescent Competition Sensor), a modular and broadly applicable bioluminescent diagnostic platform enabling the detection of both small molecules and protein biomarkers. The construction of LUCOS sensors entails the covalent and site-specific coupling of a bioluminescent sensor component to an analyte-specific antibody via protein G-mediated photoconjugation. Target detection is accomplished through intramolecular competition with a tethered analyte competitor for antibody binding. We established two variants of LUCOS: an inherent ratiometric LUCOSR variant and an intensiometric LUCOSI version, which can be used for ratiometric detection upon the addition of a split calibrator luciferase. To demonstrate the versatility of the LUCOS platform, sensors were developed for the detection of the small molecule cortisol and the protein biomarker NT-proBNP. Sensors for both targets displayed analyte-dependent changes in the emission ratio and enabled detection in the micromolar concentration range (KD,app = 16-92 μM). Furthermore, we showed that the response range of the LUCOS sensor can be adjusted by attenuating the affinity of the tethered NT-proBNP competitor, which enabled detection in the nanomolar concentration range (KD,app = 317 ± 26 nM). Overall, the LUCOS platform offers a highly versatile and easy method to convert commercially available monoclonal antibodies into bioluminescent biosensors that provide a homogeneous alternative for the competitive immunoassay.</p

    Point-of-care therapeutic drug monitoring of tumour necrosis factor-α inhibitors using a single step immunoassay

    Get PDF
    Therapeutic drug monitoring (TDM) of tumor necrosis factor-α (TNFα)-inhibitors adalimumab and infliximab is important to establish optimal drug dose and maximize treatment efficacy. Currently, TDM is primarily performed with ELISA techniques in clinical laboratories, resulting in a long sample-to-result workflow. Point-of-care (POC) detection of these therapeutic antibodies could significantly decrease turnaround times and allow for user-friendly home-testing. Here, we adapted the recently developed bioluminescent dRAPPID (dimeric Ratiometric Plug-and-Play Immunodiagnostics) sensor platform to allow POC TDM of infliximab and adalimumab. We applied the two best performing dRAPPID sensors, with limit-of-detections of 1 pM and 17 pM, to measure the infliximab and adalimumab levels in 49 and 40 patient serum samples, respectively. The analytical performance of dRAPPID was benchmarked with commercial ELISAs and yielded Pearson's correlation coefficients of 0.93 and 0.94 for infliximab and adalimumab, respectively. Furthermore, a dedicated bioluminescence reader was fabricated and used as a readout device for the TDM dRAPPID sensors. Subsequently, infliximab and adalimumab patient serum samples were measured with the TDM dRAPPID sensors and bioluminescence reader, yielding Pearson's correlation coefficients of 0.97 and 0.86 for infliximab and adalimumab, respectively, and small proportional differences with ELISA (slope was 0.97 ± 0.09 and 0.96 ± 0.20, respectively). The adalimumab and infliximab dRAPPID sensors, in combination with the dedicated bioluminescence reader, allow for ease-of-use TDM with a fast turnaround time and show potential for POC TDM outside of clinical laboratories.</p

    eZinCh-2: a versatile, genetically encoded FRET sensor for cytosolic and intraorganelle Zn2+ imaging

    Get PDF
    Zn2+ plays essential and diverse roles in numerous cellular processes. To get a better understanding of intracellular Zn2+ homeostasis and the putative signaling role of Zn2+, various fluorescent sensors have been developed that allow monitoring of Zn2+ concentrations in single living cells in real time. Thus far, two families of genetically encoded FRET-based Zn2+ sensors have been most widely applied, the eCALWY sensors developed by our group and the ZapCY sensors developed by Palmer and co-workers. Both have been successfully used to measure cytosolic free Zn2+, but distinctly different concentrations have been reported when using these sensors to measure Zn2+ concentrations in the ER and mitochondria. Here, we report the development of a versatile alternative FRET sensor containing a de novo Cys2His2 binding pocket that was created on the surface of the donor and acceptor fluorescent domains. This eZinCh-2 sensor binds Zn2+ with a high affinity that is similar to that of eCALWY-4 (Kd = 1 nM at pH 7.1), while displaying a substantially larger change in emission ratio. eZinCh-2 not only provides an attractive alternative for measuring Zn2+ in the cytosol but was also successfully used for measuring Zn2+ in the ER, mitochondria, and secretory vesicles. Moreover, organelle-targeted eZinCh-2 can also be used in combination with the previously reported redCALWY sensors to allow multicolor imaging of intracellular Zn2+ simultaneously in the cytosol and the ER or mitochondria

    Enzymatic Regulation of Protein-Protein Interactions in Artificial Cells

    Get PDF
    Membraneless organelles are important for spatial organization of proteins and regulation of intracellular processes. Proteins can be recruited to these condensates by specific protein–protein or protein–nucleic acid interactions, which are often regulated by post-translational modifications. However, the mechanisms behind these dynamic, affinity-based protein recruitment events are not well understood. Here, a coacervate system that incorporates the 14-3-3 scaffold protein to study enzymatically regulated recruitment of 14-3-3-binding proteins is presented, which mostly bind in a phosphorylation-dependent manner. Synthetic coacervates are efficiently loaded with 14-3-3, and phosphorylated binding partners, such as the c-Raf pS233/pS259 peptide (c-Raf), show 14-3-3-dependent sequestration with up to 161-fold increase in local concentration. The c-Raf domain is fused to green fluorescent protein (GFP-c-Raf) to demonstrate recruitment of proteins. In situ phosphorylation of GFP-c-Raf by a kinase leads to enzymatically regulated uptake. The introduction of a phosphatase into coacervates preloaded with the phosphorylated 14-3-3-GFP-c-Raf complex results in a significant cargo efflux mediated by dephosphorylation. Finally, the general applicability of this platform to study protein–protein interactions is demonstrated by the phosphorylation-dependent and 14-3-3-mediated active reconstitution of a split-luciferase inside artificial cells. This work presents an approach to study dynamically regulated protein recruitment in condensates, using native interaction domains.</p

    О нижней оценке для одной квадратичной задачи намногообразии Штифеля

    Get PDF
    Despite technological advances in metabolomics, large parts of the human metabolome are still unexplored. In an untargeted metabolomics screen aiming to identify substrates of the orphan transporter ATP-binding cassette subfamily C member 5 (ABCC5), we identified a class of mammalian metabolites, N-lactoyl-amino acids. Using parallel protein fractionation in conjunction with shotgun proteomics on fractions containing N-lactoyl-Phe-forming activity, we unexpectedly found that a protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis, a process previously considered to be negligible in vivo. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid, as shown by increased levels after physical exercise and in patients with phenylketonuria who suffer from elevated Phe levels. Our approach to identify unknown metabolites and their biosynthesis has general applicability in the further exploration of the human metabolome

    Branched KLVFF tetramers strongly potentiate inhibition of beta-amyloid aggregation

    Get PDF
    The key pathogenic event in the onset of Alzheimer's disease (AD) is the aggregation of beta-amyloid (Abeta) peptides into toxic aggregates. Molecules that interfere with this process might act as therapeutic agents for the treatment of AD. The amino acid residues 16-20 (KLVFF) are known to be essential for the aggregation of Abeta. In this study, we have used a first-generation dendrimer as a scaffold for the multivalent display of the KLVFF peptide. The effect of four KLVFF peptides attached to the dendrimer (K(4)) on Abeta aggregation was compared to the effect of monomeric KLVFF (K(1)). Our data show that K(4) very effectively inhibits the aggregation of low-molecular-weight and protofibrillar Abeta(1-42) into fibrils, in a concentration-dependent manner, and much more potently than K(1). Moreover, we show that K(4) can lead to the disassembly of existing aggregates. Our data lead us to propose that conjugates that bear multiple copies of KLVFF might be useful as therapeutic agents for the treatment of Alzheimer's disease
    corecore