88 research outputs found

    Jumping Hurdles: Peptides Able To Overcome Biological Barriers

    Get PDF
    The cell membrane, the gastrointestinal tract, and the blood–brain barrier (BBB) are good examples of biological barriers that define and protect cells and organs. They impose different levels of restriction, but they also share common features. For instance, they all display a high lipophilic character. For this reason, hydrophilic compounds, like peptides, proteins, or nucleic acids have long been considered as unable to bypass them. However, the discovery of cell-penetrating peptides (CPPs) opened a vast field of research. Nowadays, CPPs, homing peptides, and blood–brain barrier peptide shuttles (BBB-shuttles) are good examples of peptides able to target and to cross various biological barriers. CPPs are a group of peptides able to interact with the plasma membrane and enter the cell. They display some common characteristics like positively charged residues, mainly arginines, and amphipathicity. In this field, our group has been focused on the development of proline rich CPPs and in the analysis of the importance of secondary amphipathicity in the internalization process. Proline has a privileged structure being the only amino acid with a secondary amine and a cyclic side chain. These features constrain its structure and hamper the formation of H-bonds. Taking advantage of this privileged structure, three different families of proline-rich peptides have been developed, namely, a proline-rich dendrimer, the sweet arrow peptide (SAP), and a group of foldamers based on γ-peptides. The structure and the mechanism of internalization of all of them has been evaluated and analyzed. BBB-shuttles are peptides able to cross the BBB and to carry with them compounds that cannot reach the brain parenchyma unaided. These peptides take advantage of the natural transport mechanisms present at the BBB, which are divided in active and passive transport mechanisms. On the one hand, we have developed BBB-shuttles that cross the BBB by a passive transport mechanism, like diketoperazines (DKPs), (N-MePhe)n, or (PhPro)n. On the other hand, we have investigated BBB-shuttles that utilize active transport mechanisms such as SGV, THRre, or MiniAp-4. For the development of both groups, we have explored several approaches, such as the use of peptide libraries, both chemical and phage display, or hit-to-lead optimization processes. In this Account, we describe, in chronologic order, our contribution to the development of peptides able to overcome various biological barriers and our efforts to understand the mechanisms that they display. In addition, the potential use of both CPPs and BBB-shuttles to improve the transport of promising therapeutic compounds is described

    Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery

    Get PDF
    Brain delivery is one of the major challenges in drug development because of the high number of patients suffering from neural diseases and the low efficiency of the treatments available. Although the blood-brain barrier (BBB) prevents most drugs from reaching their targets, molecular vectors - known as BBB shuttles - offer great promise to safely overcome this formidable obstacle. In recent years, peptide shuttles have received growing attention because of their lower cost, reduced immunogenicity, and higher chemical versatility than traditional Trojan horse antibodies and other proteins

    Exploration of the One-Bead One-Compound Methodology for the Design of Prolyl Oligopeptidase Substrates

    Get PDF
    Here we describe the design, synthesis and evaluation of the first solid-phase substrates for prolyl oligopeptidase (POP), a cytosolic serine peptidase associated with schizophrenia, bipolar affective disorder and related neuropsychiatric disorders. This study seeks to contribute to the future design of a one-bead one-compound (OBOC) peptide library of POP substrates, based on an intramolecular energy transfer substrate. Unexpectedly, the enzymatic evaluation of the substrates attached on solid-phase by means of the HMBA linker were cleaved through the ester bond, thereby suggesting an unknown esterase activity of POP, in addition to its known peptidase activity. By performing multiple activity assays, we have confirmed the esterase activity of this enzyme and its capacity to process the substrates on solid-phase. Finally, we tested a new linker, compatible with both the solid-phase peptide-synthesis used and the enzymatic assay, for application in the future design of an OBOC library

    A MALDI-TOF-based method for studying the transport of BBB shuttles-enhancing sensitivity and versatility of cell-based in vitro transport models.

    Get PDF
    In recent decades, peptide blood-brain barrier shuttles have emerged as a promising solution for brain drugs that are not able to enter this organ. The research and development of these compounds involve the use of in vitro cell-based models of the BBB. Nevertheless, peptide transport quantification implies the use of large amounts of peptide (upper micromolar range for RP-HPLC-PDA) or of derivatives (e.g. fluorophore or quantum-dot attachment, radiolabeling) in the donor compartment in order to enhance the detection of these molecules in the acceptor well, although their structure is highly modified. Therefore, these methodologies either hamper the use of low peptide concentrations, thus hindering mechanistic studies, or do not allow the use of the unmodified peptide. Here we successfully applied a MALDI-TOF MS methodology for transport quantification in an in vitro BBB cell-based model. A light version of the acetylated peptide was evaluated, and the transport was subsequently quantified using a heavy internal standard (isotopically acetylated). We propose that this MALDI-TOF MS approach could also be applied to study the transport across other biological barriers using the appropriate in vitro transport models (e.g. Caco-2, PAMPA)

    Bike peptides: a ride through the membrane

    Get PDF
    Several natural peptides have a biaryl or biaryl ether motif in their biologically active structures. A model bicyclic pentapeptide containing a biaryl bridge has been synthesized by solid-phase peptide synthesis combining on-resin Suzuki and Miyaura cross-coupling reactions. Its biological properties in terms of permeability, stability and cytotoxicity have been studied, demon-strating the positive contribution of the biaryl bridge, excellent membrane penetration and serum stabilit

    Immunosilencing peptides by stereochemical inversion and sequence reversal: retro-D-peptides

    Get PDF
    Peptides are experiencing a new era in medical research, finding applications ranging from therapeutics to vaccines. In spite of the promising properties of peptide pharmaceuticals, their development continues to be hindered by three weaknesses intrinsic to their structure, namely protease sensitivity, clearance through the kidneys, and immune system activation. Here we report on two retro-D-peptides (H2N-hrpyiah-CONH2 and H2N-pwvpswmpprht-CONH2), which are protease-resistant and retain the original BBB shuttle activity of the parent peptide but are much less immunogenic than the parent peptide. Hence, we envisage that retro-D-peptides, which display a similar topological arrangement as their parent peptides, will expand drug design and help to overcome factors that lead to the failure of peptide pharmaceuticals in pre- and clinical trials. Furthermore, we reveal requirements to avoid or elicit specific humoral responses to therapeutic peptides, which might have a strong impact in both vaccine design and peptide therapeutic agents

    Bromotryptophans and their incorporation in cyclic and bicyclic privileged peptides

    Get PDF
    While revisiting biologically active natural peptides, the importance of the tryptophan residue became clear. In this article, the incorporation of this amino acid, brominated at different positions of the indole ring, into cyclic peptides was successfully achieved. These products demonstrated improved properties in terms of passive diffusion, permeability across membranes, biostability in human serum and cytotoxicity. Moreover, these brominated tryptophans at positions 5, 6, or 7 proved to be compatible as building blocks to prepare bicyclic stapled peptides by performing on‐resin Suzuki‐Miyaura cross‐coupling reactions

    Cyclic dipeptide shuttles as a novel skin penetration enhancement approach: preliminary evaluation with diclofenac

    Get PDF
    This study demonstrates the effectiveness of a peptide shuttle in delivering diclofenac into and through human epidermis. Diclofenac was conjugated to a novel phenylalanyl-N- methyl-naphthalenylalanine-derived diketopiperazine (DKP) shuttle and to TAT (a classical cell penetrating peptide), and topically applied to human epidermis in vitro . DKP and TAT effectively permeated into and through human epidermis. When conjugated to diclofenac, both DKP and TAT enhanced delivery into and through human epidermis, though DKP was significantly more effective. Penetration of diclofenac through human epidermis (to recep- tor) was increased by conjugation to the peptide shuttle and cell penetrating peptide with enhancement of 6x by DKP-diclofenac and 3x by TAT-diclofenac. In addition, the amount of diclofenac retained within the epidermis was significantly increased by peptide conjugation. COX-2 inhibition activity of diclofenac was retained when conjugated to DKP. Our study suggests that the peptide shuttle approach may offer a new strategy for targeted delivery of small therapeutic and diagnostic molecules to the skin

    Sequence-activity relationship, and mechanism of action of mastoparan analogues against extended-drug resistant Acinetobacter baumannii

    Full text link
    The treatment of some infectious diseases can currently be very challenging since the spread of multi-, extended- or pan-resistant bacteria has considerably increased over time. On the other hand, the number of new antibiotics approved by the FDA has decreased drastically over the last 30 years. The main objective of this study was to investigate the activity of wasp peptides, specifically mastoparan and some of its derivatives against extended-resistant Acinetobacter baumannii. We optimized the stability of mastoparan in human serum since the specie obtained after the action of the enzymes present in human serum is not active. Thus, 10 derivatives of mastoparan were synthetized. Mastoparan analogues (guanidilated at the N-terminal, enantiomeric version and mastoparan with an extra positive charge at the C-terminal) showed the same activity against Acinetobacter baumannii as the original peptide (2.7 muM) and maintained their stability to more than 24 h in the presence of human serum compared to the original compound. The mechanism of action of all the peptides was carried out using a leakage assay. It was shown that mastoparan and the abovementioned analogues were those that released more carboxyfluorescein. In addition, the effect of mastoparan and its enantiomer against A. baumannii was studied using transmission electron microscopy (TEM). These results suggested that several analogues of mastoparan could be good candidates in the battle against highly resistant A. baumannii infections since they showed good activity and high stability

    Toward a novel drug to target the EGF-EGFR interaction: design of metabolically stable bicyclic peptides

    Get PDF
    In cancer, proliferation of malignant cells is driven by overactivation of growth-signalling mechanisms, such as the epidermal growth factor receptor (EGFR) pathway. Despite its therapeutic relevance, the EGF-EGFR interaction has remained elusive to inhibition by synthetic molecules, mostly as a result of its large size and lack of binding pockets and cavities. Designed peptides, featuring cyclic motifs and other structural constraints, have the potential to modulate such challenging protein-protein interactions (PPIs). Herein, we present the structure-based design of a series of bicyclic constrained peptides that mimic an interface domain of EGFR and inhibit the EGF-EGFR interaction by targeting the smaller partner (i.e., EGF). This design process was guided by the integrated use of in silico methods and biophysical techniques, such as NMR spectroscopy and surface acoustic wave. The best analogues were able to reduce selectively the viability of EGFR+ human cancer cells. In addition to their efficacy, these bicyclic peptides are endowed with exceptional stability and metabolic resistance-two features that make them suitable candidates for in vivo applications
    corecore