6,020 research outputs found

    Role of surface states in STM spectroscopy of (111) metal surfaces with Kondo adsorbates

    Full text link
    A nearly-free-electron (NFE) model to describe STM spectroscopy of (111) metal surfaces with Kondo impurities is presented. Surface states are found to play an important role giving a larger contribution to the conductance in the case of Cu(111) and Au(111) than Ag(111) surfaces. This difference arises from the farther extension of the Ag(111) surface state into the substrate. The different line shapes observed when Co is adsorbed on different substrates can be explained from the position of the surface band onset relative to the Fermi energy. The lateral dependence of the line shape amplitude is found to be bulk-like for R|| < 4 Amstrongs and surface-like at larger distances, in agreement with experimental data.Comment: 4 pages, 3 eps figure

    Fluctuation diagnostics of the electron self-energy: Origin of the pseudogap physics

    Full text link
    We demonstrate how to identify which physical processes dominate the low-energy spectral functions of correlated electron systems. We obtain an unambiguous classification through an analysis of the equation of motion for the electron self-energy in its charge, spin and particle-particle representations. Our procedure is then employed to clarify the controversial physics responsible for the appearance of the pseudogap in correlated systems. We illustrate our method by examining the attractive and repulsive Hubbard model in two-dimensions. In the latter, spin fluctuations are identified as the origin of the pseudogap, and we also explain why d−d-wave pairing fluctuations play a marginal role in suppressing the low-energy spectral weight, independent of their actual strength.Comment: 6 pages, 2 figures + 4 pages supplementar

    Phonon anomalies due to strong electronic correlations in layered organic metals

    Get PDF
    We show how the coupling between the phonons and electrons in a strongly correlated metal can result in phonon frequencies which have a non-monotonic temperature dependence. Dynamical mean-field theory is used to study the Hubbard-Holstein model that describes the \kappa-(BEDT-TTF)_2 X family of superconducting molecular crystals. The crossover with increasing temperature from a Fermi liquid to a bad metal produces phonon anomalies that are consistent with recent Raman scattering and acoustic experiments.Comment: 6 pages, 3 eps figure
    • …
    corecore