47 research outputs found
Semi-Automatic Classification Of Histopathological Images: Dealing With Inter-Slide Variations
Introduction/ Background
The large size and high resolution of histopathological whole slide images renders their manual annotation time-consuming and costly. State-of-the-art computer-based segmentation approaches are generally able to classify tissue reliably, but strong inter-slide variations between training and evaluation data can cause significant decreases in classification accuracy.
Aims
In this study, we focus on alpha-SMA stainings of the mouse kidney, and in particular on the classification of glomerular vs. non-glomerular regions. Even though all slides had been recorded using a common staining protocol, inter-slide variations could be observed. We investigate the impact of these variations as well as methods of resolution.
Methods
We propose an interactive, semi-automatic tissue classification approach [1] which adapts a pre-trained classification model to the new image on which classification should be performed. Image patches for which the class (glomerular/non-glomerular) is uncertain are automatically selected and presented to the user to determine the class label. The user interaction step is repeated several times to iteratively adjust the model to the characteristics of the new image. For image representation and classification, well known methods from the literature are utilized. Specifically, we combine Local Binary Patters with the support vector classifier.
Results
In case of 50 available labelled sample patches of a certain whole slide image, the overall classification rate increased from 92 % to 98 % through including the interactive labelling step. Even with only 20 labelled patches, accuracy already increased to 97 %. Without a pre-trained model, if training is performed on target domain data only, 88 % (20 labelled samples) and 95 % (50 labelled samples) accuracy, respectively, were obtained. If enough target domain data was available (about 20 images), the amount of source domain data was of minor relevance. The difference in outcome between a source domain training data set containing 100 patches from one whole slide image and a set containing 700 patches from seven images was lower than 1 %. Contrarily, without target domain data, the difference in accuracy was 10 % (82 % compared to 92 %) between these two settings. Execution runtime between two interaction steps is significantly below one second (0.23 s), which is an important usability criterion.
It proved to be beneficial to select specific target domain data in an active learning sense based on the currently available trained model. While experimental evaluation provided strong empirical evidence for increased classification performance with the proposed method, the additional manual effort can be kept at a low level. The labelling of e.g. 20 images per slide is surely less time consuming than the validation of a complete whole slide image processed with a fully automatic, but less reliable, segmentation approach. Finally, it should be highlighted that the proposed interaction protocol could easily be adapted to other histopathological classification or segmentation tasks, also for implementation in a clinical system.
Integrated Visualization of Human Brain Connectome Data
Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases
Deep-Learning based segmentation and quantification in experimental kidney histopathology
BACKGROUND: Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand for quantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation.
METHODS: We investigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman\u27s capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total.
RESULTS: Multiclass segmentation performance was very high in all disease models. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standard morphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies.
CONCLUSIONS: We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys from various species and renal disease models. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies
Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies
The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise
NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image
This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of whole- scene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image
Angeborene GefÀssanomalien in der Maulhöhle bei zwei KÀlbern
Zwei KĂ€lber wurden mit einem angeborenen Tumor an der rostralen mandibulĂ€ren Gingiva prĂ€sentiert. Bei beiden FĂ€llen kam es nach einer chirurgischen Entfernung der Masse zu Rezidiven. Histologisch bestanden beide Massen aus unorganisiert angeordneten, vaskulĂ€ren HohlrĂ€umen, eingebettet in locker angeordnetem Stroma und Alcianblau-PAS positiver Grundsubstanz. Radiologisch war bei beiden FĂ€llen eine Destruktion der AlveolarfĂ€cher zu sehen, die in Fall 1 histologisch mit einem Knochen- ab und umbau und der Einsprossung von viel Bindegewebe vereinbar war. Die Literaturrecherche ergab, dass es keine einheitlichen Kriterien zur korrekten Klassifi zierung solcher GefĂ€sstumoren gibt, was dazu gefĂŒhrt hat, dass vergleichbare LĂ€sionen in der Vergangenheit unterschiedlich benannt wurden. Wir schlagen deshalb vor, solche VerĂ€nderungen als angeborene GefĂ€ssanomalie zu bezeichnen bis klare morphologische, immunhistochemische und molekulargenetische Differenzierungskriterien zu VerfĂŒgung stehen
Recommended from our members
Position Dependency of Surface Roughness in Parts from Laser Beam Melting Systems
Laser Beam Melting is a promising Additive Manufacturing technology for the production of complex
metal components. During batch production of multiple identical parts in a single build job, we observed parts
with deviating surface roughness in certain areas, which all faced away from the laser. This suggests a dependency
of surface roughness on the part position in the build chamber. In this work we systematically reproduce and
analyze this effect. We place hollow pyramids with twelve faces and two different overhanging angles at nine
positions on the substrate plate and build this setup twice, using an imaging setup for process documentation.
Surface roughness is measured by contact profilometry on three lines for each pyramid face. Our experiments
reproduce the effect. Based on these findings we present a hypothesis for the cause and show metallographic
images to support our theory. As a consequence, the position relative to the laser should be considered in the
design phase for parts with high surface quality requirements.Mechanical Engineerin
Evaluation of hippocampal segmentation methods for healthy and pathological subjects
Hippocampal atrophy is a clinical biomarker of Alzheimer's disease (AD) and is implicated in many other neurological and psychiatric diseases. For this reason, there is much interest in the accurate, reproducible delineation of this region of interest (ROI) in structural MR images. Here, both current and novel MR hippocampal segmentation methods are presented and evaluated: Two versions of FMRIB's Integrated Registration and Segmentation Tool (FIRST and FIRSTv2), Freesurfer's Aseg (FS), Classifier Fusion (CF) and a Fast Marching approach (FMClose). Segmentation performance on two clinical datasets is assessed according to three common measures: Dice coefficient, false positive rate (FPR) and false negative rate (FNR). The first clinical dataset contains 9 normal controls (NC) and 8 highly-atrophied AD patients, whilst the second is a collection of 16 NC and 16 bipolar (BP) patients. Results show that CF outperforms all other methods on the BPSA data, whilst FIRST and FIRSTv2 perform best on the CMA data, with average Dice coefficients of 0.81±0.01, 0.85±0.00 and 0.85±0.01, respectively. This work brings to light several strengths and weaknesses of the evaluated hippocampal segmentation methods, of utmost importance for robust and accurate segmentation in the presence of specific and substantial pathology. © The Eurographics Association 2010