12 research outputs found
First isolation report of Arcobacter cryaerophilus from a human diarrhea sample in Costa Rica
ABSTRACT Arcobacter cryaerophilus is an emerging enteropathogen and potential zoonotic agent transmitted by food and water. In Costa Rica, this bacterium has not been associated with cases of human gastroenteritis, even though it has been isolated from farm animals, especially poultry. This paper reports the first isolation of A. cryaerophilus from a human case of bloody watery diarrhea and the virulence genes associated with this isolate
Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments
Microplastics (<5 mm particles) occur within both engineered and natural freshwater ecosystems, including wastewater treatment plants, lakes, rivers, and estuaries. While a significant proportion of microplastic pollution is likely sequestered within freshwater environments, these habitats also constitute an important conduit of microscopic polymer particles to oceans worldwide. The quantity of aquatic microplastic waste is predicted to dramatically increase over the next decade, but the fate and biological implications of this pollution are still poorly understood. A growing body of research has aimed to characterize the formation, composition, and spatiotemporal distribution of microplastic-associated (“plastisphere”) microbial biofilms. Plastisphere microorganisms have been suggested to play significant roles in pathogen transfer, modulation of particle buoyancy, and biodegradation of plastic polymers and co-contaminants, yet investigation of these topics within freshwater environments is at a very early stage. Here, what is known about marine plastisphere assemblages is systematically compared with up-to-date findings from freshwater habitats. Through analysis of key differences and likely commonalities between environments, we discuss how an integrated view of these fields of research will enhance our knowledge of the complex behavior and ecological impacts of microplastic pollutants
A role for flies (Diptera) in the transmission of Campylobacter to broilers?
Campylobacter is the leading cause of bacterial diarrhoeal disease worldwide, with raw and undercooked poultry meat and products the primary source of infection. Colonization of broiler chicken flocks with Campylobacter has proved difficult to prevent, even with high levels of biosecurity. Dipteran flies are proven carriers of Campylobacter and their ingress into broiler houses may contribute to its transmission to broiler chickens. However, this has not been investigated in the UK. Campylobacter was cultured from 2195 flies collected from four UK broiler farms. Of flies cultured individually, 0·22% [2/902, 95% confidence interval (CI) 0–0·53] were positive by culture for Campylobacter spp. Additionally, 1293 flies were grouped by family and cultured in 127 batches: 4/127 (3·15%, 95% CI 0·11-6·19) from three broiler farms were positive for Campylobacter. Multilocus sequence typing of isolates demonstrated that the flies were carrying broiler-associated sequence types, responsible for human enteric illness. Malaise traps were used to survey the dipteran species diversity on study farms and also revealed up to 612 flies present around broiler-house ventilation inlets over a 2-h period. Therefore, despite the low prevalence of Campylobacter cultured from flies, the risk of transmission by this route may be high, particularly during summer when fly populations are greatest