55 research outputs found
School librarians as literacy educators within a complex role
Librarians in schools are expected to play an important role as literacy educators, and have a positive impact on young people’s literacy learning. However in the context of their diverse workload, relatively little is known about how this aspect of their role sits within its competing demands, and the exact scope of the literacy educator requirements. Using a hybrid approach to content analysis, this article analyses 40 recent job description documents to identify the nature and prevalence of different aspects of the role, and to explore the literacy educator aspect of this profession. Findings suggest that while the literacy educator aspect is one of the most common role requirements, it sits within a complex workload, and the literacy educator aspect is itself multi-faceted and demanding
Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments
Microplastics (<5 mm particles) occur within both engineered and natural freshwater ecosystems, including wastewater treatment plants, lakes, rivers, and estuaries. While a significant proportion of microplastic pollution is likely sequestered within freshwater environments, these habitats also constitute an important conduit of microscopic polymer particles to oceans worldwide. The quantity of aquatic microplastic waste is predicted to dramatically increase over the next decade, but the fate and biological implications of this pollution are still poorly understood. A growing body of research has aimed to characterize the formation, composition, and spatiotemporal distribution of microplastic-associated (“plastisphere”) microbial biofilms. Plastisphere microorganisms have been suggested to play significant roles in pathogen transfer, modulation of particle buoyancy, and biodegradation of plastic polymers and co-contaminants, yet investigation of these topics within freshwater environments is at a very early stage. Here, what is known about marine plastisphere assemblages is systematically compared with up-to-date findings from freshwater habitats. Through analysis of key differences and likely commonalities between environments, we discuss how an integrated view of these fields of research will enhance our knowledge of the complex behavior and ecological impacts of microplastic pollutants
Microplastic in angling baits as a cryptic source of contamination in European freshwaters.
High environmental microplastic pollution, and its largely unquantified impacts on organisms, are driving studies to assess their potential entry pathways into freshwaters. Recreational angling, where many anglers release manufactured baits into freshwater ecosystems, is a widespread activity with important socio-economic implications in Europe. It also represents a potential microplastic pathway into freshwaters that has yet to be quantified. Correspondingly, we analysed three different categories of industrially-produced baits ('groundbait', 'boilies' and 'pellets') for their microplastic contamination (particles 700 µm to 5 mm). From 160 samples, 28 microplastics were identified in groundbait and boilies, with a mean concentration of 17.4 (± 48.1 SD) MP kg-1 and 6.78 (± 29.8 SD) mg kg-1, yet no microplastics within this size range were recorded in the pellets. Microplastic concentrations significantly differed between bait categories and companies, but microplastic characteristics did not vary. There was no correlation between microplastic contamination and the number of bait ingredients, but it was positively correlated with C:N ratio, indicating a higher contamination in baits with higher proportion of plant-based ingredients. We thus reveal that bait microplastics introduced accidentally during manufacturing and/or those originating from contaminated raw ingredients might be transferred into freshwaters. However, further studies are needed to quantify the relative importance of this cryptic source of contamination and how it influences microplastic levels in wild fish
Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020
Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation
Pulse radiolysis study of the reactions of SO<SUB>4</SUB><SUP>•-</SUP> with some substituted benzenes in aqueous solution
The reactions of SO4•- with several substituted benzenes having the general formula, C6H5-nXnY (where X = F, Cl or Br and Y = CH3, CH2Cl, CHCl2, CF3 or OCH3), have been investigated in aqueous solution by pulse radiolysis. The transient absorption spectra exhibit maxima at 315-330 nm and additional peaks at 270-290 nm with chlorotoluenes and weak peaks around 400 nm with chlorobenzene and 3-chlorofluorobenzene. Only in the case of 3-chloroanisole is the observed spectrum different, exhibiting two distinct peaks at 290 and 475 nm. The second-order rate constants for the reaction of SO4•- range from about 108 for 2-chlorobenzotrifluoride to 1010 dm3mol-1s-1 for 3-chloroanisole. It is concluded from the Hammett treatment (ρ +=- 1.6) that the reaction mechanism involves both direct electron transfer and addition-elimination reactions. The intermediate radical cation is hydrolysed to give the corresponding ρ OH adduct absorbing at 315-330 nm except in the case of 3-chloroanisole where it is stabilized. The formation of a benzyl-type radical by direct H abstraction by SO4•- from the CH3 group and/or deprotonation of the radical cation is an additional process whose extent is determined by the relative position of the CH3 group, the order being para > ortho≈meta with monochlorotoluenes. The transient species absorbing around 400 nm is assigned to the phenoxyl-type radical. The differences in reaction mechanism between SO4•- and •OH attack are discussed
A role for flies (Diptera) in the transmission of Campylobacter to broilers?
Campylobacter is the leading cause of bacterial diarrhoeal disease worldwide, with raw and undercooked poultry meat and products the primary source of infection. Colonization of broiler chicken flocks with Campylobacter has proved difficult to prevent, even with high levels of biosecurity. Dipteran flies are proven carriers of Campylobacter and their ingress into broiler houses may contribute to its transmission to broiler chickens. However, this has not been investigated in the UK. Campylobacter was cultured from 2195 flies collected from four UK broiler farms. Of flies cultured individually, 0·22% [2/902, 95% confidence interval (CI) 0–0·53] were positive by culture for Campylobacter spp. Additionally, 1293 flies were grouped by family and cultured in 127 batches: 4/127 (3·15%, 95% CI 0·11-6·19) from three broiler farms were positive for Campylobacter. Multilocus sequence typing of isolates demonstrated that the flies were carrying broiler-associated sequence types, responsible for human enteric illness. Malaise traps were used to survey the dipteran species diversity on study farms and also revealed up to 612 flies present around broiler-house ventilation inlets over a 2-h period. Therefore, despite the low prevalence of Campylobacter cultured from flies, the risk of transmission by this route may be high, particularly during summer when fly populations are greatest
Biological and chemical monitoring of the ecological risks of pesticides in Lake Ziway, Ethiopia
Lake Ziway, a freshwater lake located in Ethiopia, is under the pressure of pesticide and nutrient pollution due to agricultural activity and urbanization. This study has analysed concentrations of insecticides, fungicides and nutrients in water and sediment samples of Lake Ziway taken in the wet and dry season at 13 sites expected to be under different environmental stress and assessed their expected ecological impacts. Malathion, dimethoate, metalaxyl, diazinon, chlorpyrifos, fenitrothion and endosulfan were detected in more than half of the water samples, while diazinon, α-cypermethrin and endosulfan were frequently detected (>25%) in sediment samples. Higher levels of physicochemical parameters were observed at sample locations proximate to agricultural and urban activities. Risk quotients (RQ) and multi-substance Potentially Affected Fraction (msPAFRA) were calculated to assess the ecological risk of individual and mixture of pesticides, respectively. The majority of the pesticides detected in the water of the lake showed a potential acute risk (RQ > 1), specifically the insecticides chlorpyrifos, λ-cyhalothrin and α-cypermethrin for which high potential acute risks were calculated using a 2nd tier risk assessment. Levels of pesticides in sediment showed low ecological risks. Arthropods and fishes are expected to be highly affected by mixtures of pesticides (msPAFRA = < 1–80%) detected at locations that are proximate to smallholders’ farms, and receive largescale farms’ wastewater and at sites where inflow rivers join the lake. Macroinvertebrates based redundancy analysis showed the effectiveness of EPT richness to assess ecological status of the lake. Training for smallholder farmers on pesticides safety and usage, and implementation of improved effluent management mechanisms by floriculture farms are urgently needed intervention measures to reduce the pollution.</p
- …