42 research outputs found

    A grounded theory study on the influence of sleep on Parkinson’s symptoms

    Get PDF
    Contains fulltext : 167717.pdf (publisher's version ) (Open Access)BACKGROUND: Upon awaking, many Parkinson's patients experience an improved mobility, a phenomenon known as 'sleep benefit'. Despite the potential clinical relevance, no objective correlates of sleep benefit exist. The discrepancy between the patients' subjective experience of improvement in absence of objective changes is striking, and raises questions about the nature of sleep benefit. We aimed to clarify what patients reporting subjective sleep benefit, actually experience when waking up. Furthermore, we searched for factors associated with subjective sleep benefit. METHODS: Using a standardized topic list, we interviewed 14 Parkinson patients with unambiguous subjective sleep benefit, selected from a larger questionnaire-based cohort. A grounded theory approach was used to analyse the data. RESULTS: A subset of the participants described a temporary decrease in their Parkinson motor symptoms after sleep. Others did experience beneficial effects which were, however, non-specific for Parkinson's disease (e.g. feeling 'rested'). The last group misinterpreted the selection questionnaire and did not meet the definition of sleep benefit for various reasons. There were no general sleep-related factors that influenced the presence of sleep benefit. Factors mentioned to influence functioning at awakening were mostly stress related. CONCLUSIONS: The group of participants convincingly reporting sleep benefit in the selection questionnaire appeared to be very heterogeneous, with only a portion of them describing sleep benefit on motor symptoms. The group of participants actually experiencing motor sleep benefit may be much smaller than reported in the literature so far. Future studies should employ careful inclusion criteria, which could be based on our reported data

    Deep Transfer Learning for Automated Single-Lead EEG Sleep Staging with Channel and Population Mismatches

    Get PDF
    Automated sleep staging using deep learning models typically requires training on hundreds of sleep recordings, and pre-training on public databases is therefore common practice.However, suboptimal sleep stage performance may occur from mismatches between source and target datasets, such as differences in population characteristics (e.g., an unrepresented sleep disorder) or sensors (e.g., alternative channel locations for wearable EEG). We investigated three strategies for training an automated single-channel EEG sleep stager: pre-training (i.e., training on the original source dataset), training-from-scratch (i.e., training on the new target dataset), and fine-tuning (i.e., training on the original source dataset, fine-tuning on the new target dataset). As source dataset, we used the F3-M2 channel of healthy subjects (N=94). Performance of the different training strategies was evaluated using Cohen's Kappa (Îș) in eight smaller target datasets consisting of healthy subjects (N=60), patients with obstructive sleep apnea (OSA, N=60), insomnia (N=60), and REM sleep behavioral disorder (RBD, N=22), combined with two EEG channels, F3-M2 and F3-F4. No differences in performance between the training strategies was observed in the agematched F3-M2 datasets, with an average performance across strategies of Îș = .83 in healthy, Îș = .77 in insomnia, and Îș = .74 in OSA subjects. However, in the RBD set, where data availability was limited, fine-tuning was the preferred method (Îș = .67), with an average increase in Îș of .15 to pre-training and training-from-scratch. In the presence of channel mismatches, targeted training is required, either through training-from-scratch or fine-tuning, increasing performance with Îș = .17 on average. We found that, when channel and/or population mismatches cause suboptimal sleep staging performance, a fine-tuning approach can yield similar to superior performance compared to building a model from scratch, while requiring a smaller sample size. In contrast to insomnia and OSA, RBD data contains characteristics, either inherent to the pathology or age-related, which apparently demand targeted training

    FlexEvent:going beyond Case-Centric Exploration and Analysis of Multivariate Event Sequences

    Get PDF
    In many domains, multivariate event sequence data is collected focused around an entity (the case). Typically, each event has multiple attributes, for example, in healthcare a patient has events such as hospitalization, medication, and surgery. In addition to the multivariate events, also the case (a specific attribute, e.g., patient) has associated multivariate data (e.g., age, gender, weight). Current work typically only visualizes one attribute per event (label) in the event sequences. As a consequence, events can only be explored from a predefined case-centric perspective. However, to find complex relations from multiple perspectives (e.g., from different case definitions, such as doctor), users also need an event- and attribute-centric perspective. In addition, support is needed to effortlessly switch between and within perspectives. To support such a rich exploration, we present FlexEvent: an exploration and analysis method that enables investigation beyond a fixed case-centric perspective. Based on an adaptation of existing visualization techniques, such as scatterplots and juxtaposed small multiples, we enable flexible switching between different perspectives to explore the multivariate event sequence data needed to answer multi-perspective hypotheses. We evaluated FlexEvent with three domain experts in two use cases with sleep disorder and neonatal ICU data that show our method facilitates experts in exploring and analyzing real-world multivariate sequence data from different perspectives

    Deep Transfer Learning for Automated Single-Lead EEG Sleep Staging with Channel and Population Mismatches

    Get PDF
    Automated sleep staging using deep learning models typically requires training on hundreds of sleep recordings, and pre-training on public databases is therefore common practice.However, suboptimal sleep stage performance may occur from mismatches between source and target datasets, such as differences in population characteristics (e.g., an unrepresented sleep disorder) or sensors (e.g., alternative channel locations for wearable EEG). We investigated three strategies for training an automated single-channel EEG sleep stager: pre-training (i.e., training on the original source dataset), training-from-scratch (i.e., training on the new target dataset), and fine-tuning (i.e., training on the original source dataset, fine-tuning on the new target dataset). As source dataset, we used the F3-M2 channel of healthy subjects (N=94). Performance of the different training strategies was evaluated using Cohen's Kappa (Îș) in eight smaller target datasets consisting of healthy subjects (N=60), patients with obstructive sleep apnea (OSA, N=60), insomnia (N=60), and REM sleep behavioral disorder (RBD, N=22), combined with two EEG channels, F3-M2 and F3-F4. No differences in performance between the training strategies was observed in the agematched F3-M2 datasets, with an average performance across strategies of Îș = .83 in healthy, Îș = .77 in insomnia, and Îș = .74 in OSA subjects. However, in the RBD set, where data availability was limited, fine-tuning was the preferred method (Îș = .67), with an average increase in Îș of .15 to pre-training and training-from-scratch. In the presence of channel mismatches, targeted training is required, either through training-from-scratch or fine-tuning, increasing performance with Îș = .17 on average. We found that, when channel and/or population mismatches cause suboptimal sleep staging performance, a fine-tuning approach can yield similar to superior performance compared to building a model from scratch, while requiring a smaller sample size. In contrast to insomnia and OSA, RBD data contains characteristics, either inherent to the pathology or age-related, which apparently demand targeted training

    Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring

    Get PDF
    Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm

    Aleatoric Uncertainty Estimation of Overnight Sleep Statistics Through Posterior Sampling Using Conditional Normalizing Flows

    No full text
    In sleep staging, a polysomnography is visually scored by a human expert, who creates a hypnogram that classifies the measurement into a sequence of sleep stages, from which overnight sleep statistics, such as total sleep time, are derived. Because inter-scorer agreement between humans is limited, deep learning methods trained to automate sleep staging have aleatoric uncertainty about both hypnogram and overnight statistics. We would like to estimate this aleatoric uncertainty, which can be achieved by means of posterior sampling. Current approaches model the hypnogram through a time-based factorization of categorical distributions over sleep stages. This discards time-dependent information, invalidating posterior sampling of the overnight statistics. Instead of factorizing, we propose to jointly model the sequence of sleep stages, by introducing U-Flow, a conditional normalizing flow network. We compare U-Flow to factorized baselines, leveraging 921 recordings, and show that it achieves similar performance in terms of accuracy and Cohen’s kappa on the majority voted hypnograms, while outperforming in terms of uncertainty estimation of the overnight sleep statistics

    Modeling the Impact of Inter-Rater Disagreement on Sleep Statistics using Deep Generative Learning

    No full text
    Sleep staging is the process by which an overnight polysomnographic measurement is segmented into epochs of 30 seconds, each of which is annotated as belonging to one of five discrete sleep stages. The resulting scoring is graphically depicted as a hypnogram, and several overnight sleep statistics are derived, such as total sleep time and sleep onset latency. Gold standard sleep staging as performed by human technicians is time-consuming, costly, and comes with imperfect inter-scorer agreement, which also results in inter-scorer disagreement about the overnight statistics. Deep learning algorithms have shown promise in automating sleep scoring, but struggle to model inter-scorer disagreement in sleep statistics. To that end, we introduce a novel technique using conditional generative models based on Normalizing Flows that permits the modeling of the inter-rater disagreement of overnight sleep statistics, termed U-Flow. We compare U-Flow to other automatic scoring methods on a hold-out test set of 70 subjects, each scored by six independent scorers. The proposed method achieves similar sleep staging performance in terms of accuracy and Cohen's kappa on the majority-voted hypnograms. At the same time, U-Flow outperforms the other methods in terms of modeling the inter-rater disagreement of overnight sleep statistics. The consequences of inter-rater disagreement about overnight sleep statistics may be great, and the disagreement potentially carries diagnostic and scientifically relevant information about sleep structure. U-Flow is able to model this disagreement efficiently and can support further investigations into the impact inter-rater disagreement has on sleep medicine and basic sleep research.</p

    Sleep onset (mis)perception in relation to sleep fragmentation, time estimation and pre-sleep arousal

    No full text
    Study objective: To elucidate the contribution of time estimation and pre sleep arousal to the component of sleep onset misperception not explained by sleep fragmentation. Methods: At-home ambulatory polysomnograms (PSGs) of 31 people with insomnia were recorded. Participants performed a time estimation task and completed the Pre Sleep Arousal Scale (PSAS). Based on previous modelling of the relationship between objectively measured sleep fragmentation and sleep onset misperception, the subjective sleep onset was estimated for each participant as the start of the first uninterrupted sleep bout longer than 30 min. Subsequently, the component of misperception not explained by sleep fragmentation was calculated as the residual error between estimated sleep onset and perceived sleep onset. This residual error was correlated with individual time estimation task results and PSAS scores. Results: A negative correlation between time estimation task results and the residual error of the sleep onset model was found, indicating that participants who overestimated a time interval during the day also overestimated their sleep onset latency (SOL). No correlation was found between PSAS scores and residual error. Conclusions: Interindividual variations of sleep architecture possibly obscure the correlation of sleep onset misperception with time estimation and pre sleep arousal, especially in small groups. Therefore, we used a previously proposed model to account for the influence of sleep fragmentation. Results indicate that time estimation is associated with sleep onset misperception. Since sleep onset misperception appears to be a general characteristic of insomnia, understanding the underlying mechanisms is probably important for understanding and treating insomnia
    corecore