19,599 research outputs found
Antiquities Theft: The Role of the Museum in Modern Symbolic Violence
Humans have been collecting artifacts for centuries, whether it is for their aesthetic value or for the acquisition of knowledge. However, these artifacts have, in most cases, been taken without permission from the countries of origin. Today, museums are struggling with the issue of repatriation and many refuse to return their priceless possessions. Western museums and their supporters are arguing that repatriation will put the artifacts in danger and hurt the chances for humanity to learn from them. The arguments of these museums are an attempt of symbolic violence on non-Western nations, who are seen as unfit or unable to care for their own history
The Overlap Package
Camera traps - cameras linked to detectors so that they fire when an animal is present - are a major source of information on the abundance and habitat preferences of rare or shy forest animals. Modern cameras record the time of the photo, and the use of this to investigate diel activity patterns was immediately recognised (Gri?ffiths and van Schaik, 1993). Initially this resulted in broad classfication of taxa as diurnal, nocturnal, crepuscular, or cathemeral (van Schaik and Gri?ths, 1996). More recently, researchers have compared activity
patterns among species to see how overlapping patterns may relate to competition or predation (Linkie and Ridout, 2011; Carver et al., 2011; Ramesh et al., 2012; Carter et al., 2012; Kamler et al., 2012; Ross et al., 2013).
Ridout and Linkie (2009) presented methods to fit kernel density functions to times of observations of animals and to estimate the coe?cient of overlapping, a quantitative measure ranging from 0 (no overlap) to 1 (identical activity patterns). The code they used forms the basis of the overlap package. Although motivated by the analysis of camera trap data, overlap could be applied to data from other sources such as data loggers, provided data collection is carried out around the clock. Nor is it limited to diel cycles: tidal cycles or seasonal cycles, such as plant flowering or fruiting or animal breeding seasons could also be investigated
Wave Profile for Anti-force Waves with Maximum Possible Currents
In the theoretical investigation of the electrical breakdown of a gas, we apply a one-dimensional, steady state, constant velocity, three component fluid model and consider the electrons to be the main element in propagation of the wave. The electron gas temperature, and therefore the electron gas partial pressure, is considered to be large enough to provide the driving force. The wave is considered to have a shock front, followed by a thin dynamical transition region. Our set of electron fluid-dynamical equations consists of the equations of conservation of mass, momentum, and energy, plus the Poisson\u27s equation. The set of equations is referred to as the electron fluid dynamical equations; and a successful solution therefor must meet a set of acceptable physical conditions at the trailing edge of the wave. For breakdown waves with a significant current behind the shock front, modifications must be made to the set of electron fluid dynamical equations, as well as the shock condition on electron temperature. Considering existence of current behind the shock front, we have derived the shock condition on electron temperature, and for a set of experimentally measured wave speeds, we have been able to find maximum current values for which solutions to our set of electron velocity, electron temperature, and electron number density within the dynamical transition region of the wave
Optical and holographic storage properties of F3, Cu, and Mg-doped lithium niobate
Several samples of iron, copper, and magnesium doped lithium niobate were tested to determine their storage properties which would be applicable to an optical data storage system and an integrated optics data preprocessor which makes use of holographic storage techniques. The parameters of interest were the diffraction efficiency, write power, write time, erase time, erase energy, and write sensitivity. Results of these parameters are presented. It was found that iron doped lithium niobate samples yielded the best results in all parameters except for a few percent higher diffraction efficiency in copper doped samples. The magnesium doped samples were extremely insensitive and are not recommended for use in holographic optical data storage and processing systems
Review: Do the Different Sensory Areas within the Cat Anterior Ectosylvian Sulcal Cortex Collectively Represent a Network Multisensory Hub?
Current theory supports that the numerous functional areas of the cerebral cortex are organized and function as a network. Using connectional databases and computational approaches, the cerebral network has been demonstrated to exhibit a hierarchical structure composed of areas, clusters and, ultimately, hubs. Hubs are highly connected, higher-order regions that also facilitate communication between different sensory modalities. One region computationally identified network hub is the visual area of the Anterior Ectosylvian Sulcal cortex (AESc) of the cat. The Anterior Ectosylvian Visual area (AEV) is but one component of the AESc that also includes the auditory (Field of the Anterior Ectosylvian Sulcus - FAES) and somatosensory (Fourth somatosensory representation - SIV). To better understand the nature of cortical network hubs, the present report reviews the biological features of the AESc. Within the AESc, each area has extensive external cortical connections as well as among one another. Each of these core representations is separated by a transition zone characterized by bimodal neurons that share sensory properties of both adjoining core areas. Finally, core and transition zones are underlain by a continuous sheet of layer 5 neurons that project to common output structures. Altogether, these shared properties suggest that the collective AESc region represents a multiple sensory/multisensory cortical network hub. Ultimately, such an interconnected, composite structure adds complexity and biological detail to the understanding of cortical network hubs and their function in cortical processing
Debris Disks in the Scorpius-Centaurus OB Association Resolved by ALMA
We present a CO(2-1) and 1240 um continuum survey of 23 debris disks with
spectral types B9-G1, observed at an angular resolution of 0.5-1 arcsec with
the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was
selected for large infrared excess and age ~10 Myr, to characterize the
prevalence of molecular gas emission in young debris disks. We identify three
CO-rich debris disks, plus two additional tentative (3-sigma) CO detections.
Twenty disks were detected in the continuum at the >3-sigma level. For the 12
disks in the sample that are spatially resolved by our observations, we perform
an independent analysis of the interferometric continuum visibilities to
constrain the basic dust disk geometry, as well as a simultaneous analysis of
the visibilities and broad-band spectral energy distribution to constrain the
characteristic grain size and disk mass. The gas-rich debris disks exhibit
preferentially larger outer radii in their dust disks, and a higher prevalence
of characteristic grain sizes smaller than the blowout size. The gas-rich disks
do not exhibit preferentially larger dust masses, contrary to expectations for
a scenario in which a higher cometary destruction rate would be expected to
result in a larger mass of both CO and dust. The three debris disks in our
sample with strong CO detections are all around A stars: the conditions in
disks around intermediate-mass stars appear to be the most conducive to the
survival or formation of CO.Comment: 16 pages, 6 figures, accepted for publication in Ap
- …
