45 research outputs found

    Overexpressed TP73 induces apoptosis in medulloblastoma

    Get PDF
    Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and sensitized them to cell death in response to chemotherapeutic agents. Conclusion These results indicate that primary medulloblastomas express significant levels of TP73 isoforms, and suggest that they can modulate the survival and genotoxic responsiveness of medulloblastomas cells

    Biomarker-guided antibiotic duration for hospitalized patients with suspected sepsis: the ADAPT-sepsis randomized clinical trial

    Get PDF
    Importance: For hospitalized critically ill adults with suspected sepsis, procalcitonin (PCT) and C-reactive protein (CRP) monitoring protocols can guide the duration of antibiotic therapy, but the evidence of the effect and safety of these protocols remains uncertain. Objective: To determine whether decisions based on assessment of CRP or PCT safely results in a reduction in the duration of antibiotic therapy. Design, Setting, and Participants: A multicenter, intervention-concealed randomized clinical trial, involving 2760 adults (≥18 years), in 41 UK National Health Service (NHS) intensive care units, requiring critical care within 24 hours of initiating intravenous antibiotics for suspected sepsis and likely to continue antibiotics for at least 72 hours. Intervention: From January 1, 2018, to June 5, 2024, 918 patients were assigned to the daily PCT-guided protocol, 924 to the daily CRP-guided protocol, and 918 assigned to standard care. Main Outcomes and Measures: The primary outcomes were total duration of antibiotics (effectiveness) and all-cause mortality (safety) to 28 days. Secondary outcomes included critical care unit data and hospital stay data. Ninety-day all-cause mortality was also collected. Results: Among the randomized patients (mean age 60.2 [SD, 15.4] years; 60.3% males), there was a significant reduction in antibiotic duration from randomization to 28 days for those in the daily PCT-guided protocol compared with standard care (mean duration, 10.7 [SD, 7.6] days for standard care and 9.8 [SD, 7.2] days for PCT; mean difference, 0.88 days; 95% CI, 0.19 to 1.58, P = .01). For all-cause mortality up to 28 days, the daily PCT-guided protocol was noninferior to standard care, where the noninferiority margin was set at 5.4% (19.4% [170 of 878] of patients receiving standard care; 20.9% [184 of 879], PCT; absolute difference, 1.57; 95% CI, −2.18 to 5.32; P = .02). No difference was found in antibiotic duration for standard care vs daily CRP-guided protocol (mean duration, 10.6 [7.7] days for CRP; mean difference, 0.09; 95% CI, −0.60 to 0.79; P = .79). For all-cause mortality, the daily CRP-guided protocol was inconclusive compared with standard care (21.1% [184 of 874] for CRP; absolute difference, 1.69; 95% CI, −2.07 to 5.45; P = .03). Conclusions and Relevance: Care guided by measurement of PCT reduces antibiotic duration safely compared with standard care, but CRP does not. All-cause mortality for CRP was inconclusive. Trial Registration: isrctn.org Identifier: ISRCTN4747324

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Conversion of AFLP markers to high-throughput markers in a complex polyploid, sugarcane

    No full text
    The application of DNA markers linked to traits of commercial value in sugarcane may increase the efficiency of sugarcane breeding. The majority of markers generated for quantitative trait locus mapping in sugarcane have been single sequence repeats or AFLPs (amplified fragment length polymorphisms). Since AFLP markers are not adapted for large-scale implementation in plant breeding, our objective was to assess the feasibility of converting AFLP markers to fast, cheap and reliable PCR-based assays in a complex polyploid, sugarcane. Three AFLP markers were selected on the basis of an association to resistance to the fungal pathogen Ustilago scitaminea, the causal agent of smut in sugarcane. We developed an approach which enabled the identification of polymorphisms in these AFLP markers. Towards this goal, we employed GenomeWalking and 454 sequencing to isolate sequences adjacent to the linked AFLP markers and identify SNP (single nucleotide polymorphisms) haplotypes present in the homo(eo)logous chromosomes of sugarcane. One AFLP marker was converted to a cleavage amplified polymorphic sequence marker, another to a SCAR (sequence characteristered amplified region) marker and the final AFLP marker to a SNP PCR-based assay. However, validation of each of the markers in 240 genotypes resulted in 99, 90 and 60% correspondence with the original AFLP marker. These experiments indicate that even in a complex polyploid such as sugarcane, polymorphisms identified by AFLP can be converted to high-throughput marker systems, but due to the complexity this would only be carried out for high-value markers. In some cases, the polymorphisms identified are not transferable to more sequence-specific PCR applications

    Sugarcane Smut, Caused by <i>Sporisorium scitamineum</i>, a Major Disease of Sugarcane: A Contemporary Review

    Full text link
    Sugarcane smut caused by the fungus Sporisorium scitamineum is one of the major diseases of sugarcane worldwide, causing significant losses in productivity and profitability of this perennial crop. Teliospores of this fungus are airborne, can travel long distances, and remain viable in hot and dry conditions for &gt;6 months. The disease is easily recognized by its long whiplike sorus produced on the apex or side shoots of sugarcane stalks. Each sorus can release ≤100 million teliospores in a day; the spores are small (≤7.5 µ) and light and can survive in harsh environmental conditions. The airborne teliospores are the primary mode of smut spread around the world and across cane-growing regions. The most effective method of managing this disease is via resistant varieties. Because of the complex genomic makeup of sugarcane, selection for resistant traits is difficult in sugarcane breeding programs. In recent times, the application of molecular markers as a rapid tool of discarding susceptible genotypes early in the selection program has been investigated. Large effect resistance loci have been identified and have the potential to be used for marker-assisted selection to increase the frequency of resistant breeding lines in breeding programs. Recent developments in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have contributed to our understanding and provided insights into the mechanism of resistance and susceptibility. This knowledge will further our understanding of smut and its interactions with sugarcane genotypes and aid in the development of durable resistant varieties. </jats:p

    Development of a high-throughput, low-cost SNP genotyping panel for sugarcane breeding

    No full text
    SUGARCANE (SACCHARUM SPP.) IS one of the world's most important economic crops, grown for its sugar and biofuel production. Investigating genomic sequence variation is critical for identifying alleles contributing to important agronomic traits. The development and delivery of varieties that are higher yielding and disease resistant is one of the main research goals in sugarcane breeding. To achieve this, sugarcane breeding is focusing on genetic improvement programs assisted by single nucleotide polymorphisms (SNP) molecular markers. SNPs are now the molecular marker of choice in animal and crop breeding programs around the world because very large numbers of SNPs per genotype can be accurately screened for, and are amenable to high-throughput screening. However, a particular difficulty when working at the DNA level with sugarcane is its highly complex and polyploid genome. The development of SNP markers in sugarcane can overcome the current limitations as large numbers throughout the genome can be easily screened across many genotypes. Recently, an Affymetrix® Axiom® 45K SNP chip was developed for sugarcane and has dramatically improved the construction of high-density linkage maps and identification of target QTLs for agronomic traits in sugarcane. Marker-assisted selection (MAS) in plant breeding requires markers that are tightly linked to genes of interest and are cost-effective. The use of high-density SNP chips, such as the Axiom® sugarcane SNP chip, for MAS is still price-prohibitive in sugarcane breeding. The objective of this study was to develop a low-density, low-cost SNP panel that could be used for selection of disease resistant clones in the breeding program. Initially, we used the 45K sugarcane SNP chip to identify new markers, which were found to be linked to resistance to smut across different genetic backgrounds. A comparison was then made of these SNP markers converted to two different SNP marker technologies, the LGC® KASPTM assay and the Fluidigm® SNPTypeTM assay, for the development of a high-throughput, low-cost SNP marker panel for disease resistance in sugarcane. We discuss aspects that should be considered during the design of these SNP genotyping arrays, including the importance of validation of SNP markers in diverse genetic backgrounds, costs of marker implementation and decisions on where to use markers in the breeding program. These results offer promise for making selection during the breeding process more rapid, accurate and less expensive and could result in the faster delivery of new disease resistant varieties to the sugarcane industry

    Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane

    No full text
    Background: The understanding of sugarcane genetics has lagged behind that of other members of the Poaceae family such as wheat, rice, barley and sorghum mainly due to the complexity, size and polyploidization of the genome. We have used the genetic map of a sugarcane cultivar to generate a consensus genetic map to increase genome coverage for comparison to the sorghum genome. We have utilized the recently developed sugarcane DArT array to increase the marker density within the genetic map. The sequence of these DArT markers plus SNP and EST-SSR markers was then used to form a bridge to the sorghum genomic sequence by BLAST alignment to start to unravel the complex genomic architecture of sugarcane. Results: Comparative mapping revealed that certain sugarcane chromosomes show greater levels of synteny to sorghum than others. On a macrosyntenic level a good collinearity was observed between sugarcane and sorghum for 4 of the 8 homology groups (HGs). These 4 HGs were syntenic to four sorghum chromosomes with from 98% to 100% of these chromosomes covered by these linked markers. Four major chromosome rearrangements were identified between the other four sugarcane HGs and sorghum, two of which were condensations of chromosomes reducing the basic chromosome number of sugarcane from x=10 to x=8. This macro level of synteny was transferred to other members within the Poaceae family such as maize to uncover the important evolutionary relationships that exist between sugarcane and these species. Conclusions: Comparative mapping of sugarcane to the sorghum genome has revealed new information on the genome structure of sugarcane which will help guide identification of important genes for use in sugarcane breeding. Furthermore of the four major chromosome rearrangements identified in this study, three were common to maize providing some evidence that chromosome reduction from a common paleo-ancestor of both maize and sugarcane was driven by the same translocation events seen in both species
    corecore