176 research outputs found

    Limitations of Near Edge X Ray Absorption Fine Structure as a tool for observing conduction bands in chalcopyrite solar cell heterojunctions

    Get PDF
    A non optimized interface band alignment in a heterojunctionbased solar cell can have negative eff ects on the current and voltage characteristics of the resulting device. To evaluate the use of Near Edge X ray Absorption Fine Structure spectroscopy NEXAFS as a means to measure the conduction band position, Cu In,Ga S2 chalcopyrite thin film surfaces were investigated as these form the absorber layer in solar cells with the structure ZnO Buffer Cu In,Ga S2 Mo Glass. The composition dependence of the structure of the conduction bands of CuInxGa1 xS2 has been revealed for x 0, 0.67 and 1 with both hard and soft NEXAFS and the resulting changes in conduction band off set at the junction with the bu ffer layer discussed. A comprehensive study of the positions of the absorption edges of all elements was carried out and the development of the conduction band with Ga content was observed, also with respect to calculated densities of state

    CdS/Cu(In,Ga)S2 based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process

    Get PDF
    In this letter, we report externally confirmed total area efficiencies reaching up to 12.9% for CdS/Cu(In,Ga)S2 based solar cells. These are the highest externally confirmed efficiencies for such cells. The absorbers were prepared from sputtered metals subsequently sulfurized using rapid thermal processing in sulfur vapor. Structural, compositional, and electrical properties of one of these champion cells are presented. The correlation between the Ga distribution profile and solar cell properties is discussed

    Comprehensive analysis of NuMA variation in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent genome wide case-control association study identified <it>NuMA </it>region on 11q13 as a candidate locus for breast cancer susceptibility. Specifically, the variant Ala794Gly was suggested to be associated with increased risk of breast cancer.</p> <p>Methods</p> <p>In order to evaluate the <it>NuMa </it>gene for breast cancer susceptibility, we have here screened the entire coding region and exon-intron boundaries of <it>NuMa </it>in 92 familial breast cancer patients and constructed haplotypes of the identified variants. Five missense variants were further screened in 341 breast cancer cases with a positive family history and 368 controls. We examined the frequency of Ala794Gly in an extensive series of familial (n = 910) and unselected (n = 884) breast cancer cases and controls (n = 906), with a high power to detect the suggested breast cancer risk. We also tested if the variant is associated with histopathologic features of breast tumors.</p> <p>Results</p> <p>Screening of <it>NuMA </it>resulted in identification of 11 exonic variants and 12 variants in introns or untranslated regions. Five missense variants that were further screened in breast cancer cases with a positive family history and controls, were each carried on a unique haplotype. None of the variants, or the haplotypes represented by them, was associated with breast cancer risk although due to low power in this analysis, very low risk alleles may go unrecognized. The <it>NuMA </it>Ala794Gly showed no difference in frequency in the unselected breast cancer case series or familial case series compared to control cases. Furthermore, Ala794Gly did not show any significant association with histopathologic characteristics of the tumors, though Ala794Gly was slightly more frequent among unselected cases with lymph node involvement.</p> <p>Conclusion</p> <p>Our results do not support the role of <it>NuMA </it>variants as breast cancer susceptibility alleles.</p

    The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    Get PDF
    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome

    Cell Cycle-Dependent Microtubule-Based Dynamic Transport of Cytoplasmic Dynein in Mammalian Cells

    Get PDF
    BACKGROUND:Cytoplasmic dynein complex is a large multi-subunit microtubule (MT)-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS:Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP)-tagged 74-kDa intermediate chain (IC74). IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs), suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE:These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein

    Loss of yata, a Novel Gene Regulating the Subcellular Localization of APPL, Induces Deterioration of Neural Tissues and Lifespan Shortening

    Get PDF
    Background: The subcellular localization of membrane and secreted proteins is finely and dynamically regulated through intracellular vesicular trafficking for permitting various biological processes. Drosophila Amyloid precursor protein like (APPL) and Hikaru genki (HIG) are examples of proteins that show differential subcellular localization among several developmental stages. Methodology/Principal Findings: During the study of the localization mechanisms of APPL and HIG, we isolated a novel mutant of the gene, CG1973, which we named yata. This molecule interacted genetically with Appl and is structurally similar to mouse NTKL/SCYL1, whose mutation was reported to cause neurodegeneration. yata null mutants showed phenotypes that included developmental abnormalities, progressive eye vacuolization, brain volume reduction, and lifespan shortening. Exogenous expression of Appl or hig in neurons partially rescued the mutant phenotypes of yata. Conversely, the phenotypes were exacerbated in double null mutants for yata and Appl. We also examined the subcellular localization of endogenous APPL and exogenously pulse-induced APPL tagged with FLAG by immunostaining the pupal brain and larval motor neurons in yata mutants. Our data revealed that yata mutants showed impaired subcellular localization of APPL. Finally, yata mutant pupal brains occasionally showed aberrant accumulation of Sec23p, a component of the COPII coat of secretory vesicles traveling from the endoplasmic reticulum (ER) to the Golgi

    The mammalian centrosome and its functional significance

    Get PDF
    Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease
    corecore