570 research outputs found

    Dystonia: sparse synapses for D2 receptors in striatum of a DYT1 knock-out mouse model

    Get PDF
    Dystonia pathophysiology has been partly linked to downregulation and dysfunction of dopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structural correlates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adult control Tor1a+/+ and mutant Tor1a+/− mice were used. The brains were perfused and free-floating sections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondary immune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals. The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2 receptor immune-fluorescence appeared circumscribed in small disks (~0.3–0.5 μm diameter), likely representing D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In the Tor1a+/− mice the D2 aggregates were significantly smaller (μm2 2.4 ± SE 0.16, compared to μm2 6.73 ± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondent to the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice the sparse and small D2 synapses in the striatum may be insufficient to “gate” the amount of presynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result in a timing and spatially larger nonselective sphere of influence of dopamine action

    Corrigendum to “Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka” published in Biogeosciences, 13, 1423–1437, 2016

    Get PDF
    In this corrigendum we report an updated pollen record from the Lake Ohrid DEEP site spanning the past 500 ka whereby we have reprocessed and re-analyzed 104 samples affected by chemical procedure problems that occurred in one palynological laboratory. Firstly, these samples were affected by the use of wrong containers, causing in- adequate settling of particles at the set centrifuging speed. Secondly, HCl and HF treatments were combined without the prescribed intermediate centrifuging and decanting steps. The inaccuracy in the protocol resulted in the loss of smaller pollen grains and in the overrepresentation of bisaccate ones in most of the re-analyzed samples. We therefore provide an updated set of figures with the new data and have revised the description of the results, discussion and conclusions re- ported in Sadori et al. (2016) where necessary. We stress that the majority of the original results and conclusions remain valid, while the records’ reliability and resolution have improved as 12 samples that had been omitted in the original study because of low count sums are now included in the revised dataset (Sadori et al., 2018)

    Effect of segmental muscle vibration on upper extremity functional ability poststroke: A randomized controlled trial.

    Get PDF
    Abstract Background: Upper extremity functional impairments are common consequences of stroke. Therefore, continuous investigation of effective interventions for upper extremity functions after stroke is a necessity. Segmental muscle vibration (SMV) is one of the interventions that incorporate sensory stimulation to improve motor cortical excitability. The aim of this study was to investigate the influence of 5-minute SMV application along with supervised physical therapy (SPT) on improving activities of daily living and motor recovery on the hemiparetic upper extremity in patients with stroke. Methods: A sample of 37 patients poststroke (29 males) was randomly allocated to either SPT control group (n=18) or SPT and SMV (SPT-SMV) experimental group (n=19). All patients received 3 sessions per week of SPT for 8 weeks. The SPT-SMV experimental group received SMV at the end of each SPT session. Outcome measures used were Barthel index (BI), modified Ashworth scale, manual muscle testing, and goniometry for range of motion (ROM) assessment. Results: Thirty-four patients completed the study. Patients in both groups improved significantly after treatment in BI, elbow ROM, and elbow muscles strength. However, muscle tone in elbow joint of the hemiplegic upper extremity improved significantly after SMV only in the experimental group (SPT-SMV). Conclusion: The SPT intervention can improve functional outcomes of upper extremity in people after stroke. However, using SMV may have superior effect on improving muscle tone after stroke. Abbreviations: ADL = activities of daily living, BI = Barthel index, MAS = modified Ashworth scale, MMT = manual muscle testing, ROM = range of motion, SMV = segmental muscle vibration, SPT = supervised physical therapy, SPT-SMV = supervised physical therapy and segmental muscle vibration

    Dopamine D_2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive 4 nicotinic receptors via a cholinergic-dependent mechanism

    Get PDF
    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D_2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering 4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D_2-receptor agonist. When challenged with the D_(2)R agonist, quinpirole (0.5–10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D_(2)R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development

    Get PDF
    Selective laser sintering (SLS) has been investigated for the production of bioactive implants and tissue scaffolds using composites of high-density polyethylene (HDPE) reinforced with hydroxyapatite (HA) with the aim of achieving the rapid manufacturing of customized implants. Single-layer and multilayer block specimens made of HA-HDPE composites with 30 and 40 vol % HA were sintered successfully using a CO2 laser sintering system. Laser power and scanning speed had a significant effect on the sintering behaviour. The degree of particle fusion and porosity were influenced by the laser processing parameters, hence control can be attained by varying these parameters. Moreover, the SLS processing allowed exposure of HA particles on the surface of the composites and thereby should provide bioactive products. Pores existed in the SLS-fabricated composite parts and at certain processing parameters a significant fraction of the pores were within the optimal sizes for tissue regeneration. The results indicate that the SLS technique has the potential not only to fabricate HA-HDPE composite products but also to produce appropriate features for their application as bioactive implants and tissue scaffolds

    Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    Full text link
    AIMS To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. METHODS AND RESULTS We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs. CONCLUSION Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally

    Dysfunctional dopaminergic neurotransmission in asocial BTBR mice

    Get PDF
    Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T+ Itpr3tf/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations

    Corrigendum to “Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka” published in Biogeosciences, 13, 1423–1437, 2016

    Get PDF
    In this corrigendum we report an updated pollen record from the Lake Ohrid DEEP site spanning the past 500 ka whereby we have reprocessed and re-analyzed 104 samples affected by chemical procedure problems that occurred in one palynological laboratory. Firstly, these samples were affected by the use of wrong containers, causing in- adequate settling of particles at the set centrifuging speed. Secondly, HCl and HF treatments were combined without the prescribed intermediate centrifuging and decanting steps. The inaccuracy in the protocol resulted in the loss of smaller pollen grains and in the overrepresentation of bisaccate ones in most of the re-analyzed samples. We therefore provide an updated set of figures with the new data and have revised the description of the results, discussion and conclusions re- ported in Sadori et al. (2016) where necessary. We stress that the majority of the original results and conclusions remain valid, while the records’ reliability and resolution have improved as 12 samples that had been omitted in the original study because of low count sums are now included in the revised dataset (Sadori et al., 2018)

    Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies

    Get PDF
    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding

    Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease

    Get PDF
    Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing
    corecore