30 research outputs found

    Peroxisome Proliferator-Activated Receptor gamma enhances the activity of a insulin degrading enzyme-like metalloprotease for amyloid-beta clearance.

    Full text link
    Peroxisome proliferator-activated receptor gamma (PPARgamma) activation results in an increased rate of amyloid-beta (Abeta) clearance from the media of diverse cells in culture, including primary neurons and glial cells. Here, we further investigate the mechanism for Abeta clearance and found that PPARgamma activation modulates a cell surface metalloprotease that can be inhibited by metalloprotease inhibitors, like EDTA and phenanthroline, and also by the peptide hormones insulin and glucagon. The metalloprotease profile of the Abeta-degrading mechanism is surprisingly similar to insulin-degrading enzyme (IDE). This mechanism is maintained in hippocampal and glia primary cultures from IDE loss-of-function mice. We conclude that PPARgamma activates an IDE-like Abeta degrading activity. Our work suggests a drugable pathway that can clear Abeta peptide from the brain

    CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity.

    Get PDF
    Intratumoral regulatory T cell (Treg) abundance associates with diminished anti-tumor immunity and poor prognosis in human cancers. Recent work demonstrates that CD25, the high affinity receptor subunit for IL-2, is a selective target for Treg depletion in mouse and human malignancies; however, anti-human CD25 antibodies have failed to deliver clinical responses against solid tumors due to bystander IL-2 receptor signaling blockade on effector T cells, which limits their anti-tumor activity. Here we demonstrate potent single-agent activity of anti-CD25 antibodies optimized to deplete Tregs whilst preserving IL-2-STAT5 signaling on effector T cells, and demonstrate synergy with immune checkpoint blockade in vivo. Pre-clinical evaluation of an anti-human CD25 (RG6292) antibody with equivalent features demonstrates, in both non-human primates and humanized mouse models, efficient Treg depletion with no overt immune-related toxicities. Our data supports the clinical development of RG6292 and evaluation of novel combination therapies incorporating non-IL-2 blocking anti-CD25 antibodies in clinical studies

    Enhancement of Polymeric Immunoglobulin Receptor Transcytosis by Biparatopic VHH

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers

    A novel implementation of a microwave analog to light scattering measurement set-up

    No full text
    International audienc
    corecore