55 research outputs found

    Noise Cancellation using Selectable Adaptive Algorithm for Speech in Variable Noise Environment

    Get PDF
    Some of the teething problems associated in the use of two-sensor noise cancellation systems are the nature of the noise signals—a problem that imposes the use of highly complex algorithms in reducing the noise. The usage of such methods can be impractical for many real time applications, where speed of convergence and processing time are critical. At the same time, the existing approaches are based on using a single, often complex adaptive filter to minimize noise, which has been determined to be inadequate and ineffective. In this paper, a new mechanism is proposed to reduce background noise from speech communications. The procedure is based on a two-sensor adaptive noise canceller that is capable of assigning an appropriate filter adapting to properties of the noise. The criterion to achieve this is based on measuring the eigenvalue spread based on the autocorrelation of the input noise. The proposed noise canceller (INC) applies an adaptive algorithm according to the characteristics of the input signal. Various experiments based on this technique using real-world signals are conducted to gauge the effectiveness of the approach. Initial results illustrated the system capabilities in executing noise cancellation under different types of environmental noise. The results based on the INC technique indicate fast convergence rates; improvements up to 30 dB in signal-to-noise ratio and at the same time shows 65% reduction of computational power compared to conventional method

    Plasma Apolipoprotein Levels Are Associated with Cognitive Status and Decline in a Community Cohort of Older Individuals

    Get PDF
    <div><h3>Objectives</h3><p>Apolipoproteins have recently been implicated in the etiology of Alzheimer’s disease (AD). In particular, Apolipoprotein J (ApoJ or clusterin) has been proposed as a biomarker of the disease at the pre-dementia stage. We examined a group of apolipoproteins, including ApoA1, ApoA2, ApoB, ApoC3, ApoE, ApoH and ApoJ, in the plasma of a longitudinal community based cohort.</p> <h3>Methods</h3><p>664 subjects (257 with Mild Cognitive Impairment [MCI] and 407 with normal cognition), mean age 78 years, from the Sydney Memory and Aging Study (MAS) were followed up over two years. Plasma apolipoprotein levels at baseline (Wave 1) were measured using a multiplex bead fluorescence immunoassay technique.</p> <h3>Results</h3><p>At Wave 1, MCI subjects had lower levels of ApoA1, ApoA2 and ApoH, and higher levels of ApoE and ApoJ, and a higher ApoB/ApoA1 ratio. Carriers of the apolipoprotein E ε4 allele had significantly lower levels of plasma ApoE, ApoC3 and ApoH and a significantly higher level of ApoB. Global cognitive scores were correlated positively with ApoH and negatively with ApoJ levels. ApoJ and ApoE levels were correlated negatively with grey matter volume and positively with cerebrospinal fluid (CSF) volume on MRI. Lower ApoA1, ApoA2 and ApoH levels, and higher ApoB/ApoA1 ratio, increased the risk of cognitive decline over two years in cognitively normal individuals. ApoA1 was the most significant predictor of decline. These associations remained after statistically controlling for lipid profile. Higher ApoJ levels predicted white matter atrophy over two years.</p> <h3>Conclusions</h3><p>Elderly individuals with MCI have abnormal apolipoprotein levels, which are related to cognitive function and volumetric MRI measures cross-sectionally and are predictive of cognitive impairment in cognitively normal subjects. ApoA1, ApoH and ApoJ are potential plasma biomarkers of cognitive decline in non-demented elderly individuals.</p> </div

    Impaired Phagocytosis in Localized Aggressive Periodontitis: Rescue by Resolvin E1

    Get PDF
    Resolution of inflammation is an active temporally orchestrated process demonstrated by the biosynthesis of novel proresolving mediators. Dysregulation of resolution pathways may underlie prevalent human inflammatory diseases such as cardiovascular diseases and periodontitis. Localized Aggressive Periodontitis (LAP) is an early onset, rapidly progressing form of inflammatory periodontal disease. Here, we report increased surface P-selectin on circulating LAP platelets, and elevated integrin (CD18) surface expression on neutrophils and monocytes compared to healthy, asymptomatic controls. Significantly more platelet-neutrophil and platelet-monocyte aggregates were identified in circulating whole blood of LAP patients compared with asymptomatic controls. LAP whole blood generates increased pro-inflammatory LTB4 with addition of divalent cation ionophore A23187 (5 µM) and significantly less, 15-HETE, 12-HETE, 14-HDHA, and lipoxin A4. Macrophages from LAP subjects exhibit reduced phagocytosis. The pro-resolving lipid mediator, Resolvin E1 (0.1–100 nM), rescues the impaired phagocytic activity in LAP macrophages. These abnormalities suggest compromised resolution pathways, which may contribute to persistent inflammation resulting in establishment of a chronic inflammatory lesion and periodontal disease progression

    Faseb J

    No full text
    Higher cardiovascular morbidity in patients with a wide range of autoimmune diseases highlights the importance of autoimmunity in promoting atherosclerosis. Our purpose was to investigate the mechanisms of accelerated atherosclerosis and identified vascular autoantigens targeted by autoimmunity. We created a mouse model of autoimmunity-associated atherosclerosis by transplanting bone marrow (BM) from FcγRIIB knockout (FcRIIB-/-) mice into LDL receptor knockout (LDLR-/-) mice. We characterized the cellular and molecular mechanisms of atherogenesis and identified specific aortic autoantigens using serologic proteomic studies. En face lesion area analysis showed more aggressive atherosclerosis in autoimmune mice compared with control mice (0.64 ± 0.12 mm2 vs. 0.32 ± 0.05 mm2; P \textless 0.05, respectively). At the cellular level, FcRIIB-/- macrophages showed significant reduction (46-72%) in phagocytic capabilities. Proteomic analysis revealed circulating autoantibodies in autoimmune mice that targeted 25 atherosclerotic lesion proteins, including essential components of adhesion complex, cytoskeleton, and extracellular matrix (ECM), and proteins involved in critical functions and pathways. Microscopic examination of atherosclerotic plaques revealed essential colocalization of autoantibodies with endothelial cells (ECs), their adherence to basement membranes, the internal elastica lamina, and necrotic cores. The new vascular autoimmunosome may be a useful target for diagnostic and immunotherapeutic interventions in autoimmunity-associated diseases that have accelerated atherosclerosi
    corecore