8,368 research outputs found
Systematic errors in global air-sea CO2 flux caused by temporal averaging of sea-level pressure
International audienceLong-term temporal averaging of meteorological data, such as wind speed and air pressure, can cause large errors in air-sea carbon flux estimates. Other researchers have already shown that time averaging of wind speed data creates large errors in flux due to the non-linear dependence of the gas transfer velocity on wind speed (Bates and Merlivat, 2001). However, in general, wind speed is negatively correlated with air pressure, and a given fractional change in the pressure of dry air produces an equivalent fractional change in the atmospheric partial pressure of carbon dioxide (<i>p</i>CO<sub>2air</sub>). Thus low pressure systems cause a drop in <i>p</i>CO<sub>2air</sub>, which together with the associated high winds, promotes outgassing/reduces uptake of CO<sub>2</sub> from the ocean. Here we quantify the errors in global carbon flux estimates caused by using monthly or climatological pressure data to calculate <i>p</i>CO<sub>2air</sub> (and thus ignoring the covariance of wind and pressure) over the period 1990?1999, using two common parameterisations for gas transfer velocity (Wanninkhof, 1992 (W92) and Wanninkhof and McGillis, 1999 (WM99)). Results show that on average, compared with estimates made using 6 hourly pressure data, the global oceanic sink is systematically overestimated by 7% (W92) and 10% (WM99) when monthly mean pressure is used, and 9% (W92) and 12% (WM99) when climatological pressure is used
Methods for Combining Payload Parameter Variations with Input Environment
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented
The use of high altitude aerial photography to inventory wildlife habitat in Kansas: An initial evaluation
The use of aerial photography as a method for determining the wildlife conditions of an area is discussed. Color infrared photography is investigated as the most effective type of remote sensor. The characteristics of the remote sensing systems are described. Examples of the remote sensing operation and the method for reducing the data are presented
System design study for an optimal remote oculometer for use in operational aircraft
System design of optimal remote oculometer for use in operational aircraf
Oculometer for remote tracking of eye movement
Prototype oculometer which tracks lateral eye position and measures the direction of the eyes optical axis, pupil size, and blink occurrence performs measurements on the subject on a real-time basis from a remote location
Effect of damping on excitability of high-order normal modes
The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs
The effects of localized damping on structural response
The effect of localized structural damping on the excitability of higher order normal modes of the large space telescope was investigated. A preprocessor computer program was developed to incorporate Voigt structural joint damping models in a NASTRAN finite-element dynamic model. A postprocessor computer program was developed to select critical modes for low-frequency attitude control problems and for higher frequency fine-stabilization problems. The mode selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensors, and on image-plane motions due to sinusoidal or random power spectral density force and torque inputs
- …
