50 research outputs found

    Sky radiance and spectral gradient are orienting cues for the sandhopper Talitrus saltator (Crustacea, Amphipoda).

    Get PDF
    The sandhopper Talitrus saltator relies on both the sun and the moon compasses to return to the belt of damp sand of the beach in which it lives buried during the day. In addition to the sun, the gradient of radiance and the spectral distribution across the sky could provide directional information that T. saltator can potentially use to orient itself during the day even when the sun is not visible (e.g. cloudy sky). The scope of this work was 1) to determine the intensity levels of sky radiance that the sandhoppers use in their zonal recovery and 2) to investigate whether this species relies on the celestial spectral gradient in its zonal recovery. Sandhoppers were tested in the laboratory under artificial radiance or spectral gradients.Our results show that under an artificial sky, simulating the natural radiance gradient on a cloudless day, sandhoppers orientated toward the correct seaward direction of their home beach, however, individuals lost their ability to use the intensity gradient as an orientation cue when the radiance was attenuated by at least 40%. Sandhoppers were also able to head in the correct seaward direction of their home beach at any time of the day by using the spectral gradient as their only source of visual orientation reference

    Implementation and Test of a LED-Based Lamp for a Lighthouse

    Get PDF
    A novel sustainable source was developed for an existing Italian lighthouse, exploiting the light emitting diode (LED) technology and the norms evolution. The research work started with the optical design of the device, while this work concerns the realization, installation, and test of the new LED lamp. The lamp recombines multiple separated LEDs, realizing a quasipunctual localized source. After installation in the lighthouse, specific photometric tests verified that the proposed power-saving source satisfied the illumination requirements of the marine signaling norms. The advantages of the LED-based lamp are reduced energy consumption, enhanced efficiency, longer life, decreased faults, slower aging, and lower maintenance costs. The obtained LED signalling device is more durable and reliable. In the future the application of these power-saving long-life sources could be extended to other maritime signaling devices or to other traffic signs

    Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers

    Get PDF
    In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device

    Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy

    Get PDF
    SHG image acquired with sagittal optical sectioning (A) of a healthy cornea and (B) of a keratoconic cornea. Scale bars: 30 μm. Keratoconus is an eye disorder that causes the cornea to take an abnormal conical shape, thus impairing its refractive functions and causing blindness. The late diagnosis of keratoconus is among the principal reasons for corneal surgical transplantation. This pathology is characterized by a reduced corneal stiffness in the region immediately below Bowman's membrane, probably due to a different lamellar organization, as suggested by previous studies. Here, the lamellar organization in this corneal region is characterized in three dimensions by means of second-harmonic generation (SHG) microscopy. In particular, a method based on a three-dimensional correlation analysis allows to probe the orientation of sutural lamellae close to the Bowman's membrane, finding statistical differences between healthy and keratoconic samples. This method is demonstrated also in combination with an epi-detection scheme, paving the way for a potential clinical ophthalmic application of SHG microscopy for the early diagnosis of keratoconus

    Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications

    Get PDF
    The optical properties of nanofluids are peculiar and interesting for a variety of applications. Among them, the high light extinction coefficient of nanofluids can be useful in linear parabolic concentrating solar systems, while their properties under high light irradiation intensities can be exploited for direct solar steam generation. The optical characterization of colloids, including the study of non-linear optical properties, is thus a needed step to design the use of such novel materials for solar energy exploitation. In this work, we analysed two different types of nanofluids, consisting of polycarboxylate chemically modified graphene nanoplatelets (P-GnP) and sulfonic acid-functionalized graphene nanoplatelets (S-GnP) dispersed in water, at three concentrations from 0.005 wt% to 0.05 wt%. Moderately stable nanofluids were achieved with favourable light extinction properties, as well as a non-linear optical behaviour under high input solar intensities
    corecore