75 research outputs found

    Entanglement of trapped-ion qubits separated by 230 meters

    Full text link
    We report on an elementary quantum network of two atomic ions separated by 230 m. The ions are trapped in different buildings and connected with 520(2) m of optical fiber. At each network node, the electronic state of an ion is entangled with the polarization state of a single cavity photon; subsequent to interference of the photons at a beamsplitter, photon detection heralds entanglement between the two ions. Fidelities of up to (88.2+2.3βˆ’6.0)%(88.2+2.3-6.0)\% are achieved with respect to a maximally entangled Bell state, with a success probability of 4Γ—10βˆ’54 \times 10^{-5}. We analyze the routes to improve these metrics, paving the way for long-distance networks of entangled quantum processors

    Cell cycle-dependent acetylation of Rb2/p130 in NIH3T3 cells

    Get PDF
    The retinoblastoma protein (pRb) and the pRb-related proteins, p130 and p107, form the β€˜pocket protein' family of cell cycle regulatory factors. A well characterized function of these proteins is the cell cycle-dependent regulation of E2F-responsive genes. The biological activity of pocket proteins is regulated by phosphorylation and for the founding member pRb it has been shown that acetylation also has an important role in modulating its function during the cell cycle. Here, we show that hyperphosphorylated retinoblastoma 2 (Rb2)/p130 also exists in an acetylated form in NIH3T3 cells. Acetylated p130 is present in the nucleus but not in the cytoplasm. Acetylation is cell cycle dependent, starting in S-phase and persisting until late G2-period. Using recombinant p130 and truncated forms for in vitro acetylation by the acetyltransferase p300, we could identify K1079 in the C-terminal part as the major acetylation site by mass spectrometry. Minor acetylation sites were pinpointed to K1068 and K1111 in the C-terminus, and K128 and K130 in the N-terminus. The human papilloma virus 16 protein-E7 preferentially binds to acetylated p130 and significantly increases in vitro p130 acetylation by p300

    The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    Get PDF
    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global FST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change

    1A6/DRIM, a Novel t-UTP, Activates RNA Polymerase I Transcription and Promotes Cell Proliferation

    Get PDF
    BACKGROUND: Ribosome biogenesis is required for protein synthesis and cell proliferation. Ribosome subunits are assembled in the nucleolus following transcription of a 47S ribosome RNA precursor by RNA polymerase I and rRNA processing to produce mature 18S, 28S and 5.8S rRNAs. The 18S rRNA is incorporated into the ribosomal small subunit, whereas the 28S and 5.8S rRNAs are incorporated into the ribosomal large subunit. Pol I transcription and rRNA processing are coordinated processes and this coordination has been demonstrated to be mediated by a subset of U3 proteins known as t-UTPs. Up to date, five t-UTPs have been identified in humans but the mechanism(s) that function in the t-UTP(s) activation of Pol I remain unknown. In this study we have identified 1A6/DRIM, which was identified as UTP20 in our previous study, as a t-UTP. In the present study, we investigated the function and mechanism of 1A6/DRIM in Pol I transcription. METHODOLOGY/PRINCIPAL FINDINGS: Knockdown of 1A6/DRIM by siRNA resulted in a decreased 47S pre-rRNA level as determined by Northern blotting. Ectopic expression of 1A6/DRIM activated and knockdown of 1A6/DRIM inhibited the human rDNA promoter as evaluated with luciferase reporter. Chromatin immunoprecipitation (ChIP) experiments showed that 1A6/DRIM bound UBF and the rDNA promoter. Re-ChIP assay showed that 1A6/DRIM interacts with UBF at the rDNA promoter. Immunoprecipitation confirmed the interaction between 1A6/DRIM and the nucleolar acetyl-transferase hALP. It is of note that knockdown of 1A6/DRIM dramatically inhibited UBF acetylation. A finding of significance was that 1A6/DRIM depletion, as a kind of nucleolar stress, caused an increase in p53 level and inhibited cell proliferation by arresting cells at G1. CONCLUSIONS: We identify 1A6/DRIM as a novel t-UTP. Our results suggest that 1A6/DRIM activates Pol I transcription most likely by associating with both hALP and UBF and thereby affecting the acetylation of UBF
    • …
    corecore