4 research outputs found

    Sub-chronic Toxicity of Anti-ectoparasitic Formulation Comprising Cymbopogon Citrates Essential Oil and Jatropha Curcas Fixed Oil in Swiss Albino Mice

    Get PDF
    Ectoparasites are found widely distributed in all agro-ecological zones of Ethiopia. The problems they cause can be alleviated through the use of traditional medicinal plants.  Cymbopogon citratus is one of the traditional herbs commonly used for such purpose.  This study was conducted to profile safety of the C. citratus based anti ectoparasitic formulation. The toxicity study had shown significant weight change in animal group that received 3.75% of the formulation. There were also significant changes in serum lipid profiles of treated group animals compared with the control. The level of uric acid in animals treated with 3.75% of the formulation showed significant increase compared with the control. Liver and kidney histopathology of both treatment group animals revealed few mononuclear leucocytic infiltrations.  The blood cell parameters and different biochemical findings had revealed no sign of toxicity. However; other measured parameters like the body weight, histological and some biochemical findings had shown both significant and insignificant sign of toxicities.  Therefore; it is important to consider the effect of the formulation in prolonged treatment on body weight, uric acid excretion and lipid metabolism

    Occurrence and Pathogenicity of Indigenous Entomopathogenic Fungi Isolates to Fall Armyworm (Spodoptera frugiperda J. E. Smith) in Western Amhara, Ethiopia

    No full text
    The fall armyworm (FAW) (Spodoptera frugiperda J. E. Smith) is widely recognized as an invasive lepidopteran pest in Africa. Adoption of synthetic pesticides remains an option for emergency control of the FAW, but their large-scale use by small-scale farmers is costly and environmentally unsafe. Management options based on entomopathogenic fungi could minimize risks for health and the environment. In our study, the occurrence of entomopathogenic fungi in different habitats along with their pathogenicity to fall armyworm was examined. A total of 56 soil samples were collected from three locations. A standard isolation method, baited with the wax moth larvae (Galleria mellonella), was used for the isolation of entomopathogenic fungi from soil. Twelve entomopathogenic fungi were isolated from the total soil samples collected. It was observed that Metarhizium spp. was more frequent and widespread than Beauveria spp. and their occurrence was high in the forest habitat. Pathogenicity of indigenous entomopathogenic fungi isolates on fall armyworm larvae was tested by applying conidial suspension containing 1 × 108 spores/ml. All of the isolates tested were pathogenic to larvae of fall armyworm, with mortalities varying from 30 to 80% at 10 days posttreatment. Our results suggest that native entomopathogenic fungi could be integrated for the management of Spodoptera frugiperda larvae

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore