115 research outputs found

    Should Research Ethics Encourage the Production of Cost-Effective Interventions?

    Get PDF
    This project considers whether and how research ethics can contribute to the provision of cost-effective medical interventions. Clinical research ethics represents an underexplored context for the promotion of cost-effectiveness. In particular, although scholars have recently argued that research on less-expensive, less-effective interventions can be ethical, there has been little or no discussion of whether ethical considerations justify curtailing research on more expensive, more effective interventions. Yet considering cost-effectiveness at the research stage can help ensure that scarce resources such as tissue samples or limited subject popula- tions are employed where they do the most good; can support parallel efforts by providers and insurers to promote cost-effectiveness; and can ensure that research has social value and benefits subjects. I discuss and rebut potential objections to the consideration of cost-effectiveness in research, including the difficulty of predicting effectiveness and cost at the research stage, concerns about limitations in cost-effectiveness analysis, and worries about overly limiting researchers’ freedom. I then consider the advantages and disadvantages of having certain participants in the research enterprise, including IRBs, advisory committees, sponsors, investigators, and subjects, consider cost-effectiveness. The project concludes by qualifiedly endorsing the consideration of cost-effectiveness at the research stage. While incorporating cost-effectiveness considerations into the ethical evaluation of human subjects research will not on its own ensure that the health care system realizes cost-effectiveness goals, doing so nonetheless represents an important part of a broader effort to control rising medical costs

    Role of the podocyte in proteinuria

    Get PDF
    In recent years, the podocyte, with its elaborate cytoarchitecture and slit diaphragm, has been the focus of extensive research, yet its precise role in the glomerular filtration barrier is still debated. There are puzzling observations indicating that a comprehensive mechanistic model for glomerular filtration is still necessary. There is no doubt that podocytes are essential for glomerular filtration barrier integrity. However, most albumin never reaches the podocyte because it is prevented from entering the glomerular filter at the endothelium level. Another puzzling observation is that the glomerular filter never clogs despite its high load of several kilograms of plasma proteins per day. Recently, we proposed a novel model in which an electrical potential difference is generated across the glomerular filtration barrier by filtration. The model offers novel potential solutions to some of the riddles regarding the glomerular filter

    Particle tracking for polydisperse sedimenting droplets in phase separation

    Get PDF
    When a binary fluid demixes under a slow temperature ramp, nucleation, coarsening and sedimentation of droplets lead to an oscillatory evolution of the phase separating system. The advection of the sedimenting droplets is found to be chaotic. The flow is driven by density differences between the two phases. Here, we show how image processing can be combined with particle tracking to resolve droplet size and velocity simultaneously. Droplets are used as tracer particles, and the sedimentation velocity is determined. Taking these effects into account, droplets with radii in the range of 4 -- 40 micrometers are detected and tracked. Based on this data we resolve the oscillations in the droplet size distribution which are coupled to the convective flow.Comment: 13 pages; 16 figures including 3 photographs and 3 false-color plot

    Honeybees' Speed Depends on Dorsal as Well as Lateral, Ventral and Frontal Optic Flows

    Get PDF
    Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS (“AutopiLot using an Insect-based vision System”) model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field

    The early bee catches the flower - circadian rhythmicity influences learning performance in honey bees, Apis mellifera

    Get PDF
    Circadian rhythmicity plays an important role for many aspects of honey bees’ lives. However, the question whether it also affects learning and memory remained unanswered. To address this question, we studied the effect of circadian timing on olfactory learning and memory in honey bees Apis mellifera using the olfactory conditioning of the proboscis extension reflex paradigm. Bees were differentially conditioned to odours and tested for their odour learning at four different “Zeitgeber” time points. We show that learning behaviour is influenced by circadian timing. Honey bees perform best in the morning compared to the other times of day. Additionally, we found influences of the light condition bees were trained at on the olfactory learning. This circadian-mediated learning is independent from feeding times bees were entrained to, indicating an inherited and not acquired mechanism. We hypothesise that a co-evolutionary mechanism between the honey bee as a pollinator and plants might be the driving force for the evolution of the time-dependent learning abilities of bees

    High-pitch dual-source CT angiography of the aortic valve-aortic root complex without ECG-synchronization.

    Full text link
    PURPOSE: To compare image quality and radiation dose of high-pitch computed tomography angiography(CTA) of the aortic valve-aortic root complex with and without prospective ECG-gating compared to a retrospectively ECG-gated standard-pitch acquisition. MATERIALS AND METHODS: 120 patients(mean age 68 +/- 13 years) were examined using a 128-slice dual-source CT system using prospectively ECG-gated high-pitch(group A; n = 40), non-ECG-gated high-pitch(group B; n = 40) or retrospectively ECG-gated standard-pitch(C; n = 40) acquisition techniques. Image quality of the aortic root, valve and ascending aorta including the coronary ostia was assessed by two independent readers. Image noise was measured, radiation dose estimates were calculated. RESULTS: Interobserver agreement was good(kappa = 0.64-0.78). Image quality was diagnostic in 38/40 patients(group A), 37/40(B) and 38/40(C) with no significant difference in number of patients with diagnostic image quality among all groups (p = 0.56). Significantly more patients showed excellent image quality in group A compared to groups B and C(each, p < 0.01). Average image noise was significantly different between all groups(p < 0.05). Mean radiation dose estimates in groups A and B(each; 2.4 +/- 0.3 mSv) were significantly lower compared to group C(17.5 +/- 4.4 mSv; p < 0.01). CONCLUSION: High-pitch dual-source CTA provides diagnostic image quality of the aortic valve-aortic root complex even without ECG-gating at 86% less radiation dose when compared to a standard-pitch ECG-gated acquisition

    State of the Climate in 2016

    Get PDF

    Impact of climate change on weeds in agriculture: a review

    Full text link
    corecore