6 research outputs found

    Age-related cognitive effects of the COVID-19 pandemic restrictions and associated mental health changes in Germans

    Get PDF
    Restrictive means to reduce the spread of the COVID-19 pandemic have not only imposed broad challenges on mental health but might also affect cognitive health. Here we asked how restriction-related changes influence cognitive performance and how age, perceived loneliness, depressiveness and affectedness by restrictions contribute to these effects. 51 Germans completed three assessments of an online based study during the first lockdown in Germany (April 2020), a month later, and during the beginning of the second lockdown (November 2020). Participants completed nine online cognitive tasks of the MyBrainTraining and online questionnaires about their perceived strain and impact on lifestyle factors by the situation (affectedness), perceived loneliness, depressiveness as well as subjective cognitive performance. The results suggested a possible negative impact of depressiveness and affectedness on objective cognitive performance within the course of the lockdown. The younger the participants, the more pronounced these effects were. Loneliness and depressiveness moreover contributed to a worse evaluation of subjective cognition. In addition, especially younger individuals reported increased distress. As important educational and social input has partly been scarce during this pandemic and mental health problems have increased, future research should also assess cognitive long-term consequences

    Investigating the Potential Role of Ecological Validity on Change-Detection Memory Tasks and Distractor Processing in Younger and Older Adults

    Get PDF
    Cognitive performance is often found to be lower in older adults, especially when the task requires memory, executive functions, or selective attention. But this alleged deterioration may have been overestimated in the past due to ecologically invalid testing. To verify this possible misjudgment here we compared age-related memory performance in a typical, abstract computer task to a paper-pencil test with a real-world map and to an even more realistic task that took place in a real room with everyday objects. Retention and response intervals differed between the tasks as they had to be adjusted to the different settings. Twenty-seven younger (19–29 years old) and twenty-three older participants (61–77 years old) took part in the study. As expected younger participants outperformed the older ones in the computer task. However, although older adults’ performance was better in both more realistic tasks, the delta to the young remained the same as in the computer task. Hence, these results do not support the general notion that older adults would profit from more realistic test scenarios. On the other hand, performance in a clinical screening task correlated only with the performance in the real world task suggesting that this task reflected the general cognitive status of participants better than the more abstract tasks. Finally, it was observed that the presence of task-irrelevant distractor items actually helped older adults to improve their performance in the paper pencil task arguing against the assumption of a general age-related impairment of inhibition. In sum, the present results show that age-related changes in memory are neither simply explained by reduced abilities to deal with abstract computer tasks nor by disturbed inhibition processes

    Decision-Making Deficits in Elderly Can Be Alleviated by Attention Training

    No full text
    Decision-making is an important everyday function that deteriorates during normal aging. Here, we asked whether value-based decision-making can be improved in the elderly by cognitive training. We compared the effects of two training regimens on the performance in the Iowa Gambling Task (IGT), a real-life decision-making simulation task. Elderly participants (age 62–75 years) were randomized into three matched groups. The filter training (FT) group performed a selective attention task and the memory training (MT) group performed a memory storage task on five consecutive days. The control group (CG) did not perform another task besides the IGT. Only the FT group showed an improvement in IGT performance over the five days—the overall gain rose and the prominent deck B phenomenon decreased. The latter refers to the selection of cards associated with high gains and rare losses, which are nevertheless a disadvantageous choice as the frequent losses lead to a negative net outcome. As the deck B phenomenon has been associated with impaired cognitive abilities in aging, the positive effect of FT here is of special importance. In sum, attention training seems superior in improving decision-making in the elderly

    Structural MRI of the basal forebrain as predictor of cognitive response to galantamine in healthy older adults—A randomized controlled double-blinded crossover study

    No full text
    [Introduction] Cholinesterase inhibitors can enhance cognitive functions in healthy elderly and delay cognitive decline in patients with Alzheimer`s disease (AD). However, not everyone benefits from this treatment (non-responders). Current studies show clinical meaningful improvements only in one third of AD patients treated with cholinesterase inhibitors.[Methods] Here we investigate structural magnetic resonance imaging of the basal forebrain cholinergic system volume (BFvol) as a potential predictor of cognitive response to a single dose of galantamine in healthy adults (n = 18; 59 to 75 years).[Results] We observed that the cognitive response to galantamine, more specifically the attention-dependent filtering performance in a delayed match-to-sample working memory task, correlated with BFvol: Only participants with high BFvol showed a significant positive effect of galantamine on the ability to filter out distracting information during the working memory encoding process.[Discussion] Future studies need to assess whether BFvol may serve as a predictor of the galantamine response in AD patients, too.MJG is supported by the “Miguel Servet” program [CP19/00031] of the Spanish Instituto de Salud Carlos III (ISCIII-FEDER). Open access funding enabled and organized by Projekt DEAL.Peer reviewe

    Arterial hypertension and β-amyloid accumulation have spatially overlapping effects on posterior white matter hyperintensity volume: a cross-sectional study

    Get PDF
    Abstract Background White matter hyperintensities (WMH) in subjects across the Alzheimer’s disease (AD) spectrum with minimal vascular pathology suggests that amyloid pathology—not just arterial hypertension—impacts WMH, which in turn adversely influences cognition. Here we seek to determine the effect of both hypertension and Aβ positivity on WMH, and their impact on cognition. Methods We analysed data from subjects with a low vascular profile and normal cognition (NC), subjective cognitive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled in the ongoing observational multicentre DZNE Longitudinal Cognitive Impairment and Dementia Study (n = 375, median age 70.0 [IQR 66.0, 74.4] years; 178 female; NC/SCD/MCI 127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on baseline memory and executive function—derived from multiple neuropsychological tests using confirmatory factor analysis—, baseline preclinical Alzheimer’s cognitive composite 5 (PACC5) scores, and changes in PACC5 scores over the course of three years (ΔPACC5). Results Subjects with hypertension or Aβ positivity presented the largest WMH volumes (p FDR  < 0.05), with spatial overlap in the frontal (hypertension: 0.42 ± 0.17; Aβ: 0.46 ± 0.18), occipital (hypertension: 0.50 ± 0.16; Aβ: 0.50 ± 0.16), parietal lobes (hypertension: 0.57 ± 0.18; Aβ: 0.56 ± 0.20), corona radiata (hypertension: 0.45 ± 0.17; Aβ: 0.40 ± 0.13), optic radiation (hypertension: 0.39 ± 0.18; Aβ: 0.74 ± 0.19), and splenium of the corpus callosum (hypertension: 0.36 ± 0.12; Aβ: 0.28 ± 0.12). Elevated global and regional WMH volumes coincided with worse cognitive performance at baseline and over 3 years (p FDR  < 0.05). Aβ positivity was negatively associated with cognitive performance (direct effect—memory: − 0.33 ± 0.08, p FDR  < 0.001; executive: − 0.21 ± 0.08, p FDR  < 0.001; PACC5: − 0.29 ± 0.09, p FDR  = 0.006; ΔPACC5: − 0.34 ± 0.04, p FDR  < 0.05). Splenial WMH mediated the relationship between hypertension and cognitive performance (indirect-only effect—memory: − 0.05 ± 0.02, p FDR  = 0.029; executive: − 0.04 ± 0.02, p FDR  = 0.067; PACC5: − 0.05 ± 0.02, p FDR  = 0.030; ΔPACC5: − 0.09 ± 0.03, p FDR  = 0.043) and WMH in the optic radiation partially mediated that between Aβ positivity and memory (indirect effect—memory: − 0.05 ± 0.02, p FDR  = 0.029). Conclusions Posterior white matter is susceptible to hypertension and Aβ accumulation. Posterior WMH mediate the association between these pathologies and cognitive dysfunction, making them a promising target to tackle the downstream damage related to the potentially interacting and potentiating effects of the two pathologies. Trial registration German Clinical Trials Register (DRKS00007966, 04/05/2015)
    corecore