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Abstract 

Background White matter hyperintensities (WMH) in subjects across the Alzheimer’s disease (AD) spectrum with 
minimal vascular pathology suggests that amyloid pathology—not just arterial hypertension—impacts WMH, which 
in turn adversely influences cognition. Here we seek to determine the effect of both hypertension and Aβ positivity 
on WMH, and their impact on cognition.

Methods We analysed data from subjects with a low vascular profile and normal cognition (NC), subjective cogni‑
tive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled in the ongoing observational multicentre 
DZNE Longitudinal Cognitive Impairment and Dementia Study (n = 375, median age 70.0 [IQR 66.0, 74.4] years; 178 
female; NC/SCD/MCI 127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on 
baseline memory and executive function—derived from multiple neuropsychological tests using confirmatory factor 
analysis—, baseline preclinical Alzheimer’s cognitive composite 5 (PACC5) scores, and changes in PACC5 scores over 
the course of three years (ΔPACC5).
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Results Subjects with hypertension or Aβ positivity presented the largest WMH volumes (pFDR < 0.05), with spatial 
overlap in the frontal (hypertension: 0.42 ± 0.17; Aβ: 0.46 ± 0.18), occipital (hypertension: 0.50 ± 0.16; Aβ: 0.50 ± 0.16), 
parietal lobes (hypertension: 0.57 ± 0.18; Aβ: 0.56 ± 0.20), corona radiata (hypertension: 0.45 ± 0.17; Aβ: 0.40 ± 0.13), 
optic radiation (hypertension: 0.39 ± 0.18; Aβ: 0.74 ± 0.19), and splenium of the corpus callosum (hypertension: 
0.36 ± 0.12; Aβ: 0.28 ± 0.12). Elevated global and regional WMH volumes coincided with worse cognitive performance 
at baseline and over 3 years (pFDR < 0.05). Aβ positivity was negatively associated with cognitive performance (direct 
effect—memory: − 0.33 ± 0.08, pFDR < 0.001; executive: − 0.21 ± 0.08, pFDR < 0.001; PACC5: − 0.29 ± 0.09, pFDR = 0.006; 
ΔPACC5: − 0.34 ± 0.04, pFDR < 0.05). Splenial WMH mediated the relationship between hypertension and cogni‑
tive performance (indirect-only effect—memory: − 0.05 ± 0.02, pFDR = 0.029; executive: − 0.04 ± 0.02, pFDR = 0.067; 
PACC5: − 0.05 ± 0.02, pFDR = 0.030; ΔPACC5: − 0.09 ± 0.03, pFDR = 0.043) and WMH in the optic radiation partially medi‑
ated that between Aβ positivity and memory (indirect effect—memory: − 0.05 ± 0.02, pFDR = 0.029).

Conclusions Posterior white matter is susceptible to hypertension and Aβ accumulation. Posterior WMH mediate 
the association between these pathologies and cognitive dysfunction, making them a promising target to tackle the 
downstream damage related to the potentially interacting and potentiating effects of the two pathologies.

Trial registration German Clinical Trials Register (DRKS00007966, 04/05/2015).

Keywords White matter hyperintensities, Vascular risk, Alzheimer’s disease, Cognitive performance, MRI

Background
The term “cerebral white matter hyperintensities” 
(WMH) describes dynamic and diffuse microstructural 
alterations in both periventricular and deep white matter, 
which appear hypodense on computed tomography and 
hyperintense on T2-weighted magnetic resonance imag-
ing (MRI) and coincide with demyelination, axon loss, 
and gliosis [1, 2]. WMH are common—especially but not 
exclusively in old age—and relate to a large spectrum of 
clinical symptoms, including apathy, fatigue, delirium, 
depression, physical function disturbances, progressive 
cognitive impairment, and increased risk of stroke and 
dementia [2, 3].

Alterations to the functioning of cerebral micro-
vessels—also known as cerebral small vessel disease 
(CSVD)—caused, for instance, by long-term exposure 
to cardiovascular risk factors (hypertension particu-
larly), have been assumed to drive WMH formation 
[4–6]. Yet, emerging research has provided evidence of 
elevated global and posterior WMH volumes in individu-
als along the Alzheimer’s disease (AD) spectrum with 
minimal vascular pathology (for review see [1, 7–9]) and 
of the existence of specific spatial WMH signatures in 
hypertensive-CSVD and AD [7–16]. These findings thus 
call into question the assumption that any “AD-related” 
WMH solely reflect a vascular contribution, instead 
arguing that non-vascular pathological processes also 
play a role in WMH formation, and endorsing the spa-
tial heterogeneity of the WMH aetiology (for ongoing 
debates see [17]).

Here we use region- and voxel-based lesion analysis 
to determine the effect of both hypertension and AD 
pathology, i.e. β-amyloid (Aβ) positivity, on WMH as 
well as their interacting impact on cognition. For that 

purpose, we study WMH of non-demented participants 
of a large multicentre cohort with available cerebrospinal 
fluid (CSF) Aβ biomarkers, history of hypertension, and 
cross-sectional as well as longitudinal neuropsychologi-
cal tests.

Methods
Study design
We used baseline MRI, CSF AD biomarkers, cognitive 
performance scores, medical records, and longitudi-
nal cognitive performance scores from the DELCODE 
(DZNE Longitudinal Cognitive Impairment and Demen-
tia Study) cohort, an observational multicentre study 
from the German Centre for Neurodegenerative Diseases 
(DZNE) that focuses on the multimodal assessment of 
preclinical and clinical AD stages [18]. All participants 
received an extensive examination at the local study site 
prior to joining DELCODE, which included medical his-
tory, psychiatric and neurological assessment, neuropsy-
chological testing, blood laboratory work-up, and routine 
MRI in accordance with local standards. All memory 
clinics used the Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD) neuropsychological test 
battery [19] to assess cognitive function. We focused on 
non-complaining healthy controls with normal cogni-
tion (NC) and participants with subjective cognitive 
decline (SCD) and mild cognitive impairment (MCI) and 
excluded patients with dementia due to AD to enrich 
our sample by variance due to vascular disease and Aβ 
pathology.

The presence of SCD and amnestic MCI was diagnosed 
using the existing research criteria for SCD [20, 21] and 
MCI [22], respectively. Participants were diagnosed 
with SCD if they reported subjective cognitive decline 
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or memory concerns, as expressed to the physician of 
the memory centre, and had a test performance better 
than − 1.5 standard deviations (SD) below the age, sex, 
and education-adjusted normal performance on all sub-
tests of the CERAD battery. The MCI group consisted of 
participants with amnestic MCI, as defined by age, sex, 
and education-adjusted performance below − 1.5 SD on 
the delayed recall trial of the CERAD word-list episodic 
memory tests.

The NC group was recruited through local newspaper 
advertisements. Individuals who responded to the adver-
tisement were screened by telephone with regard to SCD. 
The control group had to achieve unimpaired cognitive 
performance according to the same definition as the SCD 
group.

All participants entered DELCODE based on either 
their clinical diagnosis derived from the clinical workup 
or their identification as a control subject according to 
the procedures outlined. Additional inclusion criteria for 
all groups were age ≥ 60  years, fluent German language 
skills, capacity to provide informed consent, and pres-
ence of a study partner. The main exclusion criteria for 
all groups were conditions clearly interfering with par-
ticipation in the study or the study procedures, including 
significant sensory impairment. The following medical 
conditions were considered exclusion criteria: current 
major depressive episode, major psychiatric disorders 
either at baseline or in the past (e.g. psychotic disorder, 
bipolar disorder, substance abuse), neurodegenerative 
disorder other than AD, vascular dementia, history of 
stroke with residual clinical symptoms, history of malig-
nant disease, severe or unstable medical conditions, and 
clinically significant laboratory abnormalities in vitamin 
B12. Prohibited drugs included chronic use of psychoac-
tive compounds with sedative or anticholinergic effects, 
use of anti-dementia agents in SCD, amnestic MCI, and 
control subjects, and investigational drugs for the treat-
ment of dementia or cognitive impairment 1  month 
before entry and throughout the duration of the study.

All participants gave written informed consent 
before inclusion in the study. DELCODE is retrospec-
tively registered at the German Clinical Trials Register 
(DRKS00007966, 04/05/2015) and was approved by local 
ethical committees and review boards.

Cognitive performance
All participants underwent a rich neuropsychological 
assessment, comprising the Mini-Mental State Exami-
nation (MMSE), Alzheimer’s Disease Assessment Scale–
Cognitive 13-item subscale (ADAS-Cog 13), the Free 
and Cued Selective Reminding Test (FCRST; including a 
serial subtraction task), Wechsler Memory Scale revised 
version (WMS-R; Logical Memory [Story A] and Digit 

Span), two semantic fluency tasks (animals and grocer-
ies), the Boston Naming Test (15-item short version 
analogue to the CERAD battery, supplemented by five 
infrequent items from the long version), the oral form 
of the Symbol-Digit-Modalities Test (SDMT, including a 
subsequent free recall of symbols and symbol-digit pair-
ings), Trail Making Test Parts A and B, Clock Drawing 
and Clock Copying, a recall task of previously copied 
figures (as in the CERAD test battery), the Face Name 
Associative Recognition Test, and a Flanker task to assess 
executive control of attention. We focused on memory 
and executive function at baseline derived from these 
neuropsychological tests using confirmatory factor anal-
ysis to reduce the influence of test-specific effects and 
measurement errors [23].

We also leveraged the Preclinical Alzheimer’s Disease 
Cognitive Composite (PACC5) [24], which provides a 
single outcome measure reflective of episodic memory, 
timed executive function, and global cognition; domains 
that have been found sensitive to amyloid pathology. 
The PACC5 score was calculated as the mean of an indi-
vidual’s z-standardised performance in the FCSRT Free 
Recall and Total Recall, the MMSE, the WMS-R Logical 
Memory Story A Delayed Recall, the number of correct 
answers in SDMT, and the sum of correct words in the 
two category fluency tasks. Baseline mean and SD values 
of the cognitively unimpaired group of our sample were 
used to derive the subtest z-scores.

We selected subjects with available PACC5 scores 
over three annual follow-ups for further analysis. We 
estimated rates of change in these PACC5 scores over 
time using a linear mixed effect model (ΔPACC5 from 
hereon). We expressed it as follows:

where PACC5ij is the PACC5 scores of subject i ∈ [1,N ] 
at visit j ∈ [1, t] ; Xij ∈ R

N×p a matrix of the p predic-
tor variables; β ∈ R

p a vector of fixed-effects regression 
coefficients; Zij ∈ R

N×q a design matrix for the q ran-
dom effects; bi ∈ R

q a vector of random effects; and εij 
the within-subject measurement errors. The fixed effects 
structure includes clinical group structure measured at 
baseline and their corresponding interaction with time 
( tij ). The fixed effects include age, sex and years of educa-
tion taken at baseline.

Hypertension
Medical records were retrospectively screened for hyper-
tension as the main cardiovascular risk factor of inter-
est at the time of MRI. We categorised participants into 
normotensive and hypertensive based on their ICD-10 
diagnosis (1: hypertensive; 0: normotensive). Single blood 
pressure measurements were not taken into account 

(1)PACC5ij = Xijβ + Zijbi + εij ,
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since repeated, long-term, or at-home measurements 
would be required for the final diagnosis [25].

Biomarker characterisation
Trained study assistants carried out lumbar punctures 
for 49% of all DELCODE participants. CSF samples were 
centrifuged, aliquoted, and stored at − 80  °C for retests. 
Biomarkers known to mirror AD pathology (CSF Aβ42 
and Aβ40) were determined by commercially available 
kits (V-PLEX Aβ Peptide Panel 1 (6E10) Kit (K15200E)). 
Each participant was classified as normal ( −) or abnor-
mal ( +) with regard to amyloid levels based on the 
Aβ42/40 ratio, independently of their phosphorylated 
Tau (pTau) status, in line with the ATN classification sys-
tem. Cut-offs (Aβ negative: Aβ42/40 > 0.08; Aβ positive: 
Aβ42/40 ≤ 0.08) were calculated from DELCODE using 
the Gaussian mixture modelling in the R-package flexmix 
(v2.3–15) (for details see [18, 26]).

Structural MRI
Structural MRI scans were acquired at nine German 
DZNE sites on Siemens MR scanners (including three 
TIM Trio, four Verio, one Skyra, and one Prisma system). 
We used T1-weighted MPRAGE images (3D GRAPPA 
PAT 2, 1  mm3 isotropic, 256 × 256, 192 sagittal slices, 
repetition time 2500  ms, echo time 4.33  ms, inversion 
time 1100  ms, flip angle 7°, ~ 5  min acquisition time) 
and T2-weighted 3D FLAIR images (GRAPPA PAT fac-
tor 2, 1  mm3 isotropic, 256 × 256, 192 sagittal slices, rep-
etition time 5000 ms, echo time 394 ms, inversion time 
1800  ms, ~ 7  min acquisition time). Standard operat-
ing procedures, quality assurance, and assessment were 
provided and supervised by the DZNE imaging network 
(iNET, Magdeburg) as described in [18]. We computed 
the mean background intensity as a surrogate measure of 
image quality and motion artefacts [27, 28] and adjusted 
statistical models for it, as the quality of the scans deter-
mine segmentation performance [29–31].

WMH segmentation and spatial processing
We processed baseline T1-weighted and FLAIR scans 
as follows. We performed bias field inhomogeneity cor-
rection, skull stripping, and segmentation using the 
Multi-Brain (MB) toolbox in statistical parametric map-
ping (SPM) [32]. We segmented grey matter (GM), 
white matter (WM), and CSF from T1-weighted scans 
with MB and identified WMH probability maps from 
FLAIR scans using the Lesion Prediction Algorithm in 
the Lesion Segmentation Toolbox [33]. We then used 
MB for normalising tissue classes (and WMH maps) to 
a DELCODE-specific MB template. We adjusted for 
local volume changes introduced by the normalisation 
in GM and WMH probability maps by modulation with 

Jacobian determinants [32, 34]. Finally, we smoothed 
WMH maps with Gaussian kernels (6  mm full width at 
half maximum). Processing results of all steps were care-
fully checked visually and statistically using covariance-
based tools provided in the Computational Anatomy 
Toolbox 12 (CAT12) [35].

ROI‑based processing
We extracted WMH volume from 12 regions of interest 
(ROI) in cerebral WM, as described in detail in a previ-
ous study [11]. In brief, we created ROIs in accordance 
with the STRIVE criteria [36] and included the four lobes 
of the brain, four major WM tracks, and three sections of 
the corpus callosum and a global cerebral WM mask. We 
calculated WMH volumes for each ROI and adjusted for 
total intracranial volume (TICV). All computations were 
conducted in the native space.

A schematic overview of both processing and analysis 
methods is illustrated in Figure S1.

Statistical analyses
Relationship between hypertension and Aβ positivity
We tested for associations between hypertension and Aβ 
positivity, given their potential collinearity [37–40], using 
Pearson’s chi-squared test with Yates’ continuity correc-
tion in the R-package stats (v3.6.2).

Effects of hypertension and Aβ positivity on WMH
We hypothesised that a history of hypertension and an 
abnormal build-up of Aβ relate positively to the volume 
of WMH, but that both conditions display distinct spatial 
effects: hypertension on deep and periventricular fron-
tal regions and Aβ on deep and periventricular posterior 
regions, as discussed in the literature [1, 4–9]. We used a 
2 × 2 ANCOVA model in CAT12 to examine the relation-
ship between WMH segmentation maps (outcome) and 
hypertension and Aβ positivity (factors) at a voxel level. 
Similarly, to probe the same relationship at a ROI level, 
we built 2 × 2 ANCOVA models in R (stats, v3.6.2), one 
for each region of interest separately. We controlled for 
covariates and confounders (see the “Covariates, con-
founders, and data transformation” section).

Effects of WMH on cognitive performance
Our hypothesis was that cognitive performance declined 
and rates of change in cognition increased as voxel-wise 
and regional WMH increased, in agreement with pre-
vious findings [2, 3]. For voxel-based analysis, we used 
multiple linear regression in CAT12 with WMH seg-
mentation maps as the dependent variable and cognitive 
performance as the independent variable. For ROI-based 
analyses, we used multiple linear regression in R (stats, 
v3.6.2) to probe the relationship between regional WMH 
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volume (independent variable) and cognitive perfor-
mance (dependent variable). We created separate mod-
els for each region of interest and for memory, executive 
function, PACC5, and ΔPACC5. Note that, for studying 
the effect of baseline WMH on change in cognition, we 
leveraged summary statistics (ΔPACC5) instead of using 
a linear mixed effect model to keep the mass univariate 
analysis efficient [41] and both the voxel- and region-wise 
analyses consistent. We controlled for hypertension and 
Aβ positivity in addition to covariates and confounders 
(see “Covariates, confounders, and data transformation” 
section).

Mediation models
Assuming that long-term exposure to hypertension and 
Aβ build-up has a negative effect on the integrity of the 
white matter and that its damage—depicted in the form 
of regional WMH—impacts cognition negatively, we 
hypothesise that there is an indirect effect of hyperten-
sion and Aβ positivity on cognition that is mediated by 
WMH volumes, in line with theoretical considerations 
[5, 6, 42, 43] (Fig.  1). We used the R-package lavaan 
(v0.6–11) and followed the steps for mediation analysis 
suggested by Hair et al. [44]. First, we tested whether Aβ 
positivity and hypertension predicted regional WMH 
volumes ( WMH ∼ �Aβ ⋅ Aβ + �Hypertension ⋅Hypertension+

Covariates/Confounders ). Second, we checked whether 
WMH could predict cognitive performance at baseline 
and over time ( Cognition ∼ �WMH ⋅WMH + �Aβ ⋅ Aβ+

�Hypertension ⋅Hypertension + Covariates/Confounders ). Third, 
we checked whether WMH mediated the relation-
ship between cognition and Aβ positivity and hyper-
tension (direct effects: δWMH , δAβ, δHypertension ; indirect 
effects: ιAβ · δWMH , ιHypertension · δWMH ; total effects: 
δAβ + ιAβ · δWMH , δHypertension + ιHypertension · δWMH  ) . 
We assessed the significance of direct, indirect, and total 
effects using 95% confidence intervals generated by bias-
corrected bootstrap with 1000 replicates. We controlled 
for covariates and confounders (see “Covariates, con-
founders, and data transformation” below).

Covariates, confounders, and data transformation
We adjusted all models for covariates (age, sex, years of 
education), confounders (TICV), and mean background 
intensity to reduce biases brought in by correlated regres-
sors. To account for collinearity between TICV and sex, 
we chose “overall mean” as “centring” for TICV and lev-
eraged global scaling for this confounder. We refrained 
from adjusting our analyses for clinical groups to avoid 
collinearity issues with Aβ positivity (namely, Aβ posi-
tivity was more frequent in MCI vs NC and SCD). We 

log-transformed regional WMH volumes to account for 
skewness.

Explicit mask
We used an explicit mask to constrain the analysis to 
voxels in which data for at least five patients were 
available.

Correction for multiple comparisons
We adjusted p-values for multiple comparisons using 
the false discovery rates (FDR) approach to deal with 
the problem of multiple comparisons [45].

Results
Sample description
We included baseline data of 375 subjects out of 1079 
recruited for DELCODE after quality control and 
assessing the availability of CSF biomarkers and MRI 
(Figure S2; median age 70.0 [IQR 66.0, 74.0] years, 
47.5% female, median years of education 13 [IQR 12, 
17]; European origins). ΔPACC5 was only available for 
a subset (n = 226/375). Demographics and global WMH 
volumes stratified by hypertension and Aβ positivity 

Fig. 1 Model investigating direct and indirect (via WMH) effects 
of hypertension and Aβ positivity on cognition. Here we seek to 
understand whether subjects with arterial hypertension or Aβ 
positive status have worse cognitive performance at baseline 
(baseline memory, executive function, and PACC5 scores) and 
outcomes over time (ΔPACC5). Because both the Aβ and vascular 
pathologies may exacerbate the formation of WMH and these, in 
turn, may also contribute to brain dysfunction and poor cognitive 
outcomes [5, 6, 42, 43], we also test for an indirect mediating effect of 
hypertension and Aβ positivity on cognitive performance via regional 
WMH volumes. We adjusted such models for age, sex, education, 
mean background intensity, and TICV, as described in “Covariates, 
confounders, and data transformation” section
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are summarised in Table  1. We found no significant 
association between arterial hypertension and Aβ posi-
tivity (Χ2 = 2.1302, p = 0.1444).

WMH are associated with arterial hypertension and Aβ 
positivity
We initially investigated WMH in relation to hyper-
tension and Aβ positivity. We observed that the global 
volume of WMH was, on average, a fourth greater 
in subjects with either a history of hypertension vs 

normotension (back-transformed regression coefficient: 
26 [95% CI 5, 52] %) or a positive vs negative Aβ status 
(25 [95% CI 3, 52] %) (Table 2). WMH in the frontal, pari-
etal, and occipital—but not temporal—lobes contributed 
to these group differences. The relationship between 
WMH and hypertension peaked in the splenium of the 
corpus callosum, whereas that between WMH and Aβ 
positivity peaked in the optic radiation, according to both 
voxel- and region-based assessments (Fig. 2 and Table 2).

WMH are negatively associated with cognitive 
performance and outcomes
We then investigated whether cognitive measures were 
associated with WMH (Fig. 3 and Table 3). Global WMH 
volumes were significantly associated with a worse cog-
nitive performance at baseline and a sharper decline in 
performance over the course of 3  years, regardless of 
hypertension diagnosis and Aβ positivity (Table  3). Evi-
dence for such a connection was present in most regions 
of interest, except in the external capsule. Such relation-
ships were consistently evident around portions of the 
anterior thalamic radiation neighbouring the thalamus 
(Fig.  3). In frontal and occipital regions, we also saw a 
significant link between WMH and quicker cognitive 
deterioration (Fig. 3—frontal peak at the level of the genu 
of the corpus callosum; occipital peak at the level of the 
forceps major and inferior fronto-occipital longitudinal 
fasciculus).

Posterior WMH mediate the effect of Aβ positivity 
and hypertension on cognition
Our final assessment consisted of determining 
whether Aβ positivity or hypertension was associ-
ated with cognition and whether ROI-level WMH 
differences mediated this link (Table  4). The out-
comes in this regard were two-fold. First, we 
found hypertension to relate to worse cognitive 

Table 1 Demographics and WMH volume, stratified by hypertension diagnosis and Aβ positivity (n = 375)

a Unadjusted WMH volumes in ml

n, sample size; IQR, interquartile range

Group Subjects
n (%)

Age in years
Median [IQR]

Female
n (%)

Education in years
Median [IQR]

Global WMH 
volume in  mla

Median [IQR]

Aβ negative
Normotension

117 (31.2) 67 [64,71] 65 (17.3) 14 [13, 17] 1.33 [0.72, 2.69]

Aβ negative
Hypertension

126 (33.6) 70 [66, 74] 56 (14.9) 13 [13, 17] 1.87 [1.07, 4.96]

Aβ positive
Normotension

54 (14.4) 72 [69, 76] 23 (6.13) 14 [12, 18] 2.51 [1.05, 4.40]

Aβ positive
Hypertension

78 (20.8) 73 [68, 76] 34 (9.07) 13 [12, 15] 3.34 [1.55, 7.33]

Table 2 Subjects with hypertension and Aβ positivity present 
the largest frontal, parietal, and occipital WMH volumes

We built multiple linear regression models to examine regional WMH volume 
(outcome) in relation to hypertension and Aβ positivity (factors)—one for each 
region of interest. We controlled for age, sex, education, mean background 
intensity, and total intracranial volume. We print pFDR < 0.05 in bold
a We log-transformed WMH volumes to deal with skewness

pFDR, p-values after adjusting for multiple comparisons using FDR; B, regression 
coefficient; SE standard error

WMH 
 volumea

Hypertension Aβ positivity

B (SE) pFDR B (SE) pFDR

Global 0.23 (0.09) 0.030 0.22 (0.10) 0.044
Lobes Frontal 0.42 (0.17) 0.021 0.46 (0.18) 0.021

Temporal 0.14 (0.14) 0.447 0.22 (0.15) 0.268

Occipital 0.50 (0.16) 0.003 0.50 (0.16) 0.004
Parietal 0.57 (0.18) 0.005 0.56 (0.20) 0.008

Tracts Corona 
radiata

0.45 (0.17) 0.020 0.40 (0.13) 0.046

External 
capsule

0.21 (0.13) 0.171 0.27 (0.13) 0.096

Internal 
capsule

0.22 (0.14) 0.209 0.07 (0.15) 0.741

Optic radia‑
tion

0.39 (0.18) 0.041 0.74 (0.19) 0.001

Corpus cal‑
losum

Genu 0.23 (0.11) 0.087 0.07 (0.12) 0.641

Body 0.21 (0.10) 0.053 0.15 (0.10) 0.212

Splenium 0.36 (0.12) 0.005 0.28 (0.12) 0.038
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performance at baseline and over follow-ups, a rela-
tionship which splenial WMH mediated (regression 
coefficient ± standard error; indirect effect—mem-
ory: − 0.05 ± 0.02, pFDR = 0.029; executive: − 0.04 ± 0.02, 
pFDR = 0.067; PACC5: − 0.05 ± 0.02, pFDR = 0.030; 
ΔPACC5: − 0.09 ± 0.03, pFDR = 0.043). Second, we found 
evidence for a negative association between Aβ posi-
tivity and cognitive performance (direct effect—mem-
ory: − 0.33 ± 0.08, pFDR < 0.001; executive: − 0.21 ± 0.08, 

pFDR < 0.001; PACC5: − 0.29 ± 0.09, pFDR = 0.006; 
ΔPACC5: − 0.34 ± 0.04, pFDR < 0.05). WMH in the optic 
radiation partially mediated the relationship between 
memory performance and Aβ positivity (indirect 
effect—memory: − 0.05 ± 0.02, pFDR = 0.029).

Discussion
Using data from a large multicentre cohort of older 
adults along the AD spectrum (n = 375), we investi-
gated the impact of arterial hypertension and Aβ posi-
tivity on WMH and cognition. Our data suggest that (i) 
both hypertension and Aβ positivity are associated with 
increased volumes of WMH at both voxel and regional 
levels, (ii) WMH are strongly associated with poor cog-
nitive performance and outcomes, (iii) splenial WMH 
have a role in the association between hypertension and 
cognitive performance at baseline and over time, and 
(iv) WMH in the optic radiation explain partially the 
negative association between Aβ positivity and memory 
performance.

Hypertension and Aβ positivity were associated with 
WMH volumes at voxel, regional, and global levels, sug-
gesting that both conditions might play a role in the forma-
tion or development of WMH. Our findings in this regard 
were twofold. First, even though hypertension-related 
WMH are often depicted in deep and periventricular fron-
tal areas [8, 15], our research suggests a diffuse rather than 
a local connection between WMH and arterial hyperten-
sion that extends from the lateral ventricles into the deep 
white matter—particularly into that below the primary 
visual cortex. Second, we observed a posterior WMH 
dominance in Aβ-positive older adults in the predemen-
tia stage of the AD continuum—a finding that matches 
ongoing hypotheses of an “AD-like” WMH pattern roughly 
confined to deep and periventricular posterior regions, 
comprising the (parieto-)occipital lobe, corona radiata, 
optic (thalamic) radiation, or the corpus callosum (espe-
cially splenium) [7–10, 16]. Global and posterior WMH 
presence and volume were nonetheless the largest when 
both Aβ retention and hypertension occurred simultane-
ously and the smallest when none of them did (Table 1). 
The posterior white matter could therefore be considered 
vulnerable to the independent yet interacting and poten-
tiating effects of AD- and hypertension-related CSVD 
pathologies. One could thus consider posterior WMH to 
be a structural correlate that underlies the common obser-
vations that vascular disease, in particular hypertension, 
lowers the threshold for all-cause dementia development 
in face of pre-existing AD pathology, and vice versa [4–6]. 
As posterior WMH dominance could also relate to cer-
ebrovascular deposition of Aβ, i.e. cerebral amyloid angi-
opathy (CAA), a condition that highly overlaps with AD 
pathology (for review see [46, 47]), we visually inspected 

Fig. 2 Posterior WMH probability is associated with both history 
of arterial hypertension and Aβ positivity. Analysis: We examined 
the relationship between WMH segmentation maps (outcome) 
and arterial hypertension and Aβ positivity (factors) at a voxel level 
via 2 × 2 ANCOVA. We accounted for the effects of age, sex, years 
of education, mean background intensity, and total intracranial 
volume. We used an explicit mask to constrain the analysis to voxels 
in which data for at least five subjects were available. Illustration: 
Glass brain projections display regions where we found evidence 
for a link between WMH probability and hypertension and Aβ 
positivity (top and middle rows, respectively). In the bottom row, 
we coloured regions blue if T values for hypertension were greater 
than for Aβ positivity and gold otherwise. We thresholded contrast 
maps at 5% and adjusted p‑values for FDR. Findings. Subjects with 
hypertension had significantly greater WMH volumes throughout 
the whole brain than those with normotension (peak: superior 
longitudinal fasciculus, xyzMNI = [32, − 1, 18], T = 3.88, DoF = [1.0, 
367.0], pFDR = 0.015). Moreover, WMH volume was significantly higher 
in subjects Aβ positivity versus negativity in posterior regions of 
the brain, particularly in segments of the forceps major and inferior 
fronto‑occipital fasciculus (xyzMNI = [30, − 58, 4], T = 5.20, DoF = [1.0, 
367.0], pFDR = 0.001)
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susceptibility-weighted sequences of all MRIs. Isolated 
lobar haemorrhagic markers were found in less than 10% 
of participants (of them 19 were diagnosed with possible 

and 4 with probable CAA according to the Boston criteria 
[48, 49]), making a relevant impact of CAA on posterior 
WMH in our sample highly unlikely.

Fig. 3 WMH volume is associated with worse baseline cognitive performance and accelerated decline over time. Analysis: We used multiple linear 
regression with WMH segmentation maps as the dependent variable and cognitive performance as the independent variable. We accounted 
for the effects of hypertension, Aβ positivity, age, sex, years of education, mean background intensity, and total intracranial volume. We used an 
explicit mask to constrain the analysis to voxels in which data for at least five subjects were available. We thresholded contrast maps at 5% and 
adjusted p‑values for FDR. Illustration: Regression results with memory (top left), executive function (bottom left), PACC5 (top right), and ΔPACC5 
(bottom right) as independent variables. Findings: We found WMH to be significantly associated with worse cognitive performance at baseline 
and sharper decline within a 3‑year period. Such relationships were consistently evident around portions of the anterior thalamic radiation 
neighbouring the thalamus (memory: xyzMNI = [− 8, − 1, 3], T = 7.00, DoF = [1.0, 366.0], pFDR = 1.44 ×  10−5; executive: xyzMNI = [− 9, 0, 5], T = 6.74, 
DoF = [1.0, 366.0], pFDR = 2.85 ×  10−5; PACC5: xyzMNI = [− 8, 1, 4], T = 7.20, DoF = [1.0, 366.0], pFDR = 8.43 ×  10−6; ΔPACC5: xyzMNI = [− 7, 2, 2], T = 4.53, 
DoF = [1.0, 217.0], pFDR = 5.12 ×  10−3). Frontal and occipital WMH also coincided with a faster cognitive decline (frontal peak at the level of the genu 
of the corpus callosum: xyzMNI = [− 1, 23, 4], T = 5.19, DoF = [1.0, 217.0], pFDR = 1.37 ×  10−3; occipital peak at the level of the forceps major and inferior 
fronto‑occipital longitudinal fasciculus: xyzMNI = [17, − 81, 2], T = 4.69, DoF = [1.0, 217.0], pFDR = 1.23 × 10.−2)

Table 3 Higher WMH volumes are associated with worse and worsening cognitive performance

We used multiple linear regression to probe the relationship between regional WMH volume (dependent variable) and cognitive performance (independent variable). 
We created separate models for each region of interest and each measure of cognitive performance. We adjusted for hypertension, Aβ positivity, age, sex, education, 
mean background intensity, and total intracranial volume. We print pFDR < 0.05 in bold
a We log-transformed WMH volumes to deal with skewness

pFDR, p-values after adjusting for multiple comparisons using FDR; n sample size, B regression coefficient, SE standard error

WMH  volumea Baseline (n = 375) Longitudinal (n = 226)

Memory Executive PACC5 ΔPACC5

B (SE); pFDR B (SE); pFDR B (SE); pFDR B (SE); pFDR

Global  − 0.10 (0.03); < 0.001  − 0.08 (0.03); 0.005  − 0.10 (0.03); 0.001  − 0.16 (0.05); 0.001
Lobes Frontal  − 0.04 (0.05); 0.012  − 0.03 (0.02); 0.028  − 0.04 (0.02); 0.008  − 0.09 (0.03); 0.004

Temporal  − 0.07 (0.02); 0.001  − 0.05 (0.02); 0.007  − 0.07 (0.02); < 0.001  − 0.13 (0.04); < 0.001
Occipital  − 0.04 (0.02); 0.006  − 0.02 (0.02); 0.335  − 0.03 (0.02); 0.078  − 0.10 (0.03); 0.001
Parietal  − 0.04 (0.01); 0.002  − 0.03 (0.01); 0.040  − 0.04 (0.01); 0.005  − 0.06 (0.03); 0.025

Tracts Corona radiata  − 0.05 (0.01); 0.001  − 0.04 (0.02); 0.008  − 0.05 (0.02); 0.003  − 0.08 (0.03); 0.004
External capsule  − 0.03 (0.02); 0.142  − 0.00 (0.02); 0.893  − 0.03 (0.02); 0.107  − 0.07 (0.04); 0.103

Internal capsule  − 0.05 (0.02); 0.004  − 0.05 (0.02); 0.005  − 0.06 (0.02); 0.002  − 0.08 (0.03); 0.016
Optic radiation  − 0.05 (0.01); 0.001  − 0.02 (0.01); 0.198  − 0.04 (0.01); 0.010  − 0.09 (0.03); 0.001

Corpus callosum Genu  − 0.07 (0.02); 0.004  − 0.04 (0.02); 0.057  − 0.06 (0.02); 0.016  − 0.11 (0.04); 0.004
Body  − 0.11 (0.03); < 0.001  − 0.10 (0.03); < 0.001  − 0.11 (0.03); < 0.001  − 0.16 (0.05); 0.001
Splenium  − 0.10 (0.02); < 0.001  − 0.08 (0.02); 0.001  − 0.10 (0.02); < 0.001  − 0.13 (0.04); 0.002



Page 9 of 13Bernal et al. Alzheimer’s Research & Therapy           (2023) 15:97  

Ta
bl

e 
4 

Po
st

er
io

r W
M

H
 m

ed
ia

te
 th

e 
eff

ec
ts

 o
f h

yp
er

te
ns

io
n 

an
d 

A
β 

po
si

tiv
ity

 o
n 

co
gn

iti
ve

 p
er

fo
rm

an
ce

W
e 

te
st

ed
 fo

r i
nd

ire
ct

 m
ed

ia
tin

g 
eff

ec
ts

 o
f a

rt
er

ia
l h

yp
er

te
ns

io
n 

an
d 

A
β 

po
si

tiv
ity

 (i
nd

ep
en

de
nt

 v
ar

ia
bl

es
) o

n 
co

gn
iti

ve
 p

er
fo

rm
an

ce
 (d

ep
en

de
nt

 v
ar

ia
bl

e)
 v

ia
 re

gi
on

al
 W

M
H

 v
ol

um
e 

(m
ed

ia
to

r v
ar

ia
bl

e)
 (F

ig
. 1

). 
Th

e 
si

gn
ifi

ca
nc

e 
of

 p
-v

al
ue

s 
fo

r t
he

se
 a

ss
oc

ia
tio

ns
 w

as
 b

as
ed

 o
n 

95
%

 c
on

fid
en

ce
 in

te
rv

al
s 

ge
ne

ra
te

d 
us

in
g 

bi
as

-c
or

re
ct

ed
 b

oo
ts

tr
ap

 w
ith

 1
00

0 
re

pl
ic

at
es

. W
e 

co
nt

ro
lle

d 
fo

r h
yp

er
te

ns
io

n,
 a

ge
, s

ex
, e

du
ca

tio
n,

 m
ea

n 
ba

ck
gr

ou
nd

 in
te

ns
ity

, a
nd

 to
ta

l i
nt

ra
cr

an
ia

l v
ol

um
e.

 W
e 

pr
in

t p
FD

R <
 0

.0
5 

in
 b

ol
d

a  W
e 

lo
g-

tr
an

sf
or

m
ed

 W
M

H
 v

ol
um

es
 to

 d
ea

l w
ith

 s
ke

w
ne

ss

p FD
R, 

p-
va

lu
es

 a
ft

er
 a

dj
us

tin
g 

fo
r m

ul
tip

le
 c

om
pa

ris
on

s 
us

in
g 

FD
R;

 n
 s

am
pl

e 
si

ze
, B

 re
gr

es
si

on
 c

oe
ffi

ci
en

t, 
SE

 s
ta

nd
ar

d 
er

ro
r

D
ep

en
de

nt
 v

ar
ia

bl
e

M
ed

ia
to

r v
ar

ia
bl

ea
H

yp
er

te
ns

io
n

A
β 

po
si

tiv
it

y

D
ire

ct
 e

ffe
ct

In
di

re
ct

 e
ffe

ct
To

ta
l e

ffe
ct

D
ire

ct
 e

ffe
ct

In
di

re
ct

 e
ffe

ct
To

ta
l e

ffe
ct

B 
(S

E)
; p

FD
R

B 
(S

E)
; p

FD
R

B 
(S

E)
; p

FD
R

B 
(S

E)
; p

FD
R

B 
(S

E)
; p

FD
R

B 
(S

E)
; p

FD
R

Ba
se

lin
e 

m
em

or
y 

(n
 =

 3
75

)
G

lo
ba

l
0.

06
 (0

.0
7)

; 0
.4

33
 −

 0
.0

3 
(0

.0
2)

; 0
.0

83
0.

03
 (0

.0
7)

; 0
.6

66
 −

 0
.3

3 
(0

.0
7)

; <
 0

.0
01

 −
 0

.0
3 

(0
.0

2)
; 0

.1
33

 −
 0

.3
6 

(0
.0

8)
; <

 0
.0

01

Fr
on

ta
l

0.
05

 (0
.0

7)
; 0

.5
00

 −
 0

.0
2 

(0
.0

1)
; 0

.1
62

0.
03

 (0
.0

7)
; 0

.6
66

 −
 0

.3
3 

(0
.0

8)
; <

 0
.0

01
 −

 0
.0

2 
(0

.0
2)

; 0
.1

79
 −

 0
.3

6 
(0

.0
8)

; <
 0

.0
01

O
cc

ip
ita

l
0.

07
 (0

.0
7)

; 0
.4

33
 −

 0
.0

4 
(0

.0
2)

; 0
.0

83
0.

03
 (0

.0
7)

; 0
.6

66
 −

 0
.3

3 
(0

.0
8)

; <
 0

.0
01

 −
 0

.0
3 

(0
.0

2)
; 0

.1
17

 −
 0

.3
6 

(0
.0

8)
; <

 0
.0

01

Pa
rie

ta
l

0.
07

 (0
.0

7)
; 0

.4
33

 −
 0

.0
4 

(0
.0

2)
; 0

.0
83

0.
03

 (0
.0

7)
; 0

.6
66

 −
 0

.3
3 

(0
.0

8)
; <

 0
.0

01
 −

 0
.0

3 
(0

.0
2)

; 0
.1

11
 −

 0
.3

6 
(0

.0
8)

; <
 0

.0
01

Co
ro

na
 ra

di
at

a
0.

06
 (0

.0
7)

; 0
.4

52
 −

 0
.0

3 
(0

.0
2)

; 0
.1

06
0.

03
 (0

.0
7)

; 0
.6

66
 −

 0
.3

3 
(0

.0
8)

; <
 0

.0
01

 −
 0

.0
2 

(0
.0

2)
; 0

.1
29

 −
 0

.3
6 

(0
.0

8)
; <

 0
.0

01

O
pt

ic
 ra

di
at

io
n

0.
06

 (0
.0

7)
; 0

.4
64

 −
 0

.0
3 

(0
.0

2)
; 0

.1
28

0.
03

 (0
.0

7)
; 0

.6
66

 −
 0

.3
1 

(0
.0

8)
; <

 0
.0

01
 −

 0
.0

5 
(0

.0
2)

; 0
.0

29
 −

 0
.3

6 
(0

.0
8)

; <
 0

.0
01

Sp
le

ni
um

0.
08

 (0
.0

7)
; 0

.3
49

 −
 0

.0
5 

(0
.0

2)
; 0

.0
29

0.
03

 (0
.0

8)
; 0

.6
66

 −
 0

.3
2 

(0
.0

8)
; <

 0
.0

01
 −

 0
.0

4 
(0

.0
2)

; 0
.1

02
 −

 0
.3

6 
(0

.0
8)

; <
 0

.0
01

Ba
se

lin
e 

ex
ec

ut
iv

e 
(n

 =
 3

75
)

G
lo

ba
l

 −
 0

.0
6 

(0
.0

7)
; 0

.4
55

 −
 0

.0
3 

(0
.0

1)
; 0

.1
12

 −
 0

.0
9 

(0
.0

7)
; 0

.2
94

 −
 0

.2
1 

(0
.0

8)
; 0

.0
29

 −
 0

.0
2 

(0
.0

2)
; 0

.2
09

 −
 0

.2
3 

(0
.0

8)
; 0

.0
14

Fr
on

ta
l

 −
 0

.0
7 

(0
.0

7)
; 0

.4
33

 −
 0

.0
2 

(0
.0

1)
; 0

.2
08

 −
 0

.0
9 

(0
.0

7)
; 0

.2
94

 −
 0

.2
1 

(0
.0

8)
; 0

.0
30

 −
 0

.0
2 

(0
.0

2)
; 0

.2
56

 −
 0

.2
3 

(0
.0

8)
; 0

.0
14

O
cc

ip
ita

l
 −

 0
.0

7 
(0

.0
7)

; 0
.3

83
 −

 0
.0

1 
(0

.0
1)

; 0
.3

87
 −

 0
.0

9 
(0

.0
7)

; 0
.2

94
 −

 0
.2

2 
(0

.0
8)

; 0
.0

23
 −

 0
.0

1 
(0

.0
1)

; 0
.4

33
 −

 0
.2

3 
(0

.0
8)

; 0
.0

14

Pa
rie

ta
l

 −
 0

.0
6 

(0
.0

7)
; 0

.4
51

 −
 0

.0
2 

(0
.0

2)
; 0

.1
80

 −
 0

.0
9 

(0
.0

7)
; 0

.2
94

 −
 0

.2
1 

(0
.0

8)
; 0

.0
29

 −
 0

.0
2 

(0
.0

1)
; 0

.2
74

 −
 0

.2
3 

(0
.0

8)
; 0

.0
14

Co
ro

na
 ra

di
at

a
 −

 0
.0

7 
(0

.0
7)

; 0
.4

52
 −

 0
.0

25
 (0

.0
1)

; 0
.1

34
 −

 0
.0

9 
(0

.0
7)

; 0
.2

94
 −

 0
.2

1 
(0

.0
8)

; 0
.0

29
 −

 0
.0

2 
(0

.0
2)

; 0
.1

90
 −

 0
.2

3 
(0

.0
8)

; 0
.0

14

O
pt

ic
 ra

di
at

io
n

 −
 0

.0
8 

(0
.0

7)
; 0

.3
70

 −
 0

.0
1 

(0
.0

1)
; 0

.3
70

 −
 0

.0
9 

(0
.0

7)
; 0

.2
94

 −
 0

.2
1 

(0
.0

8)
; 0

.0
29

 −
 0

.0
2 

(0
.0

2)
; 0

.3
65

 −
 0

.2
3 

(0
.0

8)
; 0

.0
14

Sp
le

ni
um

 −
 0

.0
5 

(0
.0

7)
; 0

.5
42

 −
 0

.0
4 

(0
.0

2)
; 0

.0
67

 −
 0

.0
9 

(0
.0

7)
; 0

.2
94

 −
 0

.2
0 

(0
.0

8)
; 0

.0
35

 −
 0

.0
3 

(0
.0

2)
; 0

.1
80

 −
 0

.2
3 

(0
.0

8)
; 0

.0
14

Ba
se

lin
e 

PA
CC

5 
(n

 =
 3

75
)

G
lo

ba
l

0.
08

 (0
.0

7)
; 0

.3
68

 −
 0

.0
3 

(0
.0

2)
; 0

.0
83

0.
04

 (0
.0

7)
; 0

.5
47

 −
 0

.2
9 

(0
.0

8)
; 0

.0
06

 −
 0

.0
3 

(0
.0

2)
; 0

.1
49

 −
 0

.3
2 

(0
.0

9)
; <

 0
.0

01

Fr
on

ta
l

0.
07

 (0
.0

7)
; 0

.4
05

 −
 0

.0
3 

(0
.0

2)
; 0

.1
51

0.
05

 (0
.0

7)
; 0

.5
47

 −
 0

.2
9 

(0
.0

9)
; 0

.0
06

 −
 0

.0
3 

(0
.0

2)
; 0

.1
78

 −
 0

.3
2 

(0
.0

9)
; <

 0
.0

01

O
cc

ip
ita

l
0.

07
 (0

.0
7)

; 0
.4

20
 −

 0
.0

2 
(0

.0
1)

; 0
.1

64
0.

05
 (0

.0
7)

; 0
.5

47
 −

 0
.2

9 
(0

.0
9)

; 0
.0

06
 −

 0
.0

2 
(0

.0
2)

; 0
.2

15
 −

 0
.3

2 
(0

.0
9)

; <
 0

.0
01

Pa
rie

ta
l

0.
07

 (0
.0

7)
; 0

.3
79

 −
 0

.0
3 

(0
.0

2)
; 0

.1
02

0.
05

 (0
.0

7)
; 0

.5
47

 −
 0

.2
8 

(0
.0

9)
; 0

.0
06

 −
 0

.0
3 

(0
.0

2)
; 0

.1
49

 −
 0

.3
2 

(0
.0

9)
; <

 0
.0

01

Co
ro

na
 ra

di
at

a
0.

07
 (0

.0
7)

; 0
.3

79
 −

 0
.0

3 
(0

.0
2)

; 0
.0

98
0.

05
 (0

.0
7)

; 0
.5

47
 −

 0
.2

9 
(0

.0
9)

; 0
.0

06
 −

 0
.0

3 
(0

.0
2)

; 0
.1

28
 −

 0
.3

2 
(0

.0
9)

; <
 0

.0
01

O
pt

ic
 ra

di
at

io
n

0.
07

 (0
.0

7)
; 0

.4
32

 −
 0

.0
2 

(0
.0

1)
; 0

.1
55

0.
05

 (0
.0

7)
; 0

.5
47

 −
 0

.2
7 

(0
.0

9)
; 0

.0
12

 −
 0

.0
4 

(0
.0

2)
; 0

.0
67

 −
 0

.3
2 

(0
.0

9)
; <

 0
.0

01

Sp
le

ni
um

0.
10

 (0
.0

7)
; 0

.2
79

 −
 0

.0
5 

(0
.0

2)
; 0

.0
30

0.
05

 (0
.0

7)
; 0

.5
47

 −
 0

.2
7 

(0
.0

9)
; 0

.0
12

 −
 0

.0
4 

(0
.0

2)
; 0

.1
20

 −
 0

.3
2 

(0
.0

9)
; <

 0
.0

01

Δ
PA

CC
5 

(n
 =

 2
26

)
G

lo
ba

l
 −

 0
.1

0 
(0

.1
3)

; 0
.4

96
 −

 0
.0

6 
(0

.0
3)

; 0
.0

95
 −

 0
.1

6 
(0

.1
3)

; 0
.2

94
 −

 0
.3

5 
(0

.1
4)

; 0
.0

41
 −

 0
.0

4 
(0

.0
3)

; 0
.3

70
 −

 0
.3

8 
(0

.1
5)

; 0
.0

29

Fr
on

ta
l

 −
 0

.1
1 

(0
.1

3)
; 0

.4
48

 −
 0

.0
5 

(0
.0

3)
; 0

.1
72

 −
 0

.1
6 

(0
.1

3)
; 0

.2
94

 −
 0

.3
3 

(0
.1

4)
; 0

.0
58

 −
 0

.0
6 

(0
.0

4)
; 0

.2
08

 −
 0

.3
8 

(0
.1

5)
; 0

.0
29

O
cc

ip
ita

l
 −

 0
.0

9 
(0

.1
3)

; 0
.5

47
 −

 0
.0

8 
(0

.0
4)

; 0
.0

84
 −

 0
.1

6 
(0

.1
3)

; 0
.2

94
 −

 0
.3

2 
(0

.1
4)

; 0
.0

69
 −

 0
.0

6 
(0

.0
3)

; 0
.1

34
 −

 0
.3

8 
(0

.1
5)

; 0
.0

29

Pa
rie

ta
l

 −
 0

.1
0 

(0
.1

3)
; 0

.4
86

 −
 0

.0
6 

(0
.0

3)
; 0

.1
21

 −
 0

.1
6 

(0
.1

3)
; 0

.2
94

 −
 0

.3
4 

(0
.1

4)
; 0

.0
50

 −
 0

.0
4 

(0
.0

3)
; 0

.2
08

 −
 0

.3
8 

(0
.1

5)
; 0

.0
29

Co
ro

na
 ra

di
at

a
 −

 0
.1

1 
(0

.1
3)

; 0
.4

64
 −

 0
.0

6 
(0

.0
3)

; 0
.1

21
 −

 0
.1

6 
(0

.1
3)

; 0
.2

94
 −

 0
.3

4 
(0

.1
4)

; 0
.0

43
 −

 0
.0

3 
(0

.0
3)

; 0
.3

52
 −

 0
.3

8 
(0

.1
5)

; 0
.0

29

O
pt

ic
 ra

di
at

io
n

 −
 0

.1
0 

(0
.1

3)
; 0

.4
71

 −
 0

.0
6 

(0
.0

3)
; 0

.1
62

 −
 0

.1
6 

(0
.1

3)
; 0

.2
94

 −
 0

.3
0 

(0
.1

4)
; 0

.0
83

 −
 0

.0
7 

(0
.0

3)
; 0

.0
83

 −
 0

.3
8 

(0
.1

5)
; 0

.0
29

Sp
le

ni
um

 −
 0

.0
8 

(0
.1

3)
; 0

.5
72

 −
 0

.0
9 

(0
.0

3)
; 0

.0
43

 −
 0

.1
6 

(0
.1

3)
; 0

.2
94

 −
 0

.3
4 

(0
.1

4)
; 0

.0
48

 −
 0

.0
4 

(0
.0

2)
; 0

.2
50

 −
 0

.3
8 

(0
.1

5)
; 0

.0
29



Page 10 of 13Bernal et al. Alzheimer’s Research & Therapy           (2023) 15:97 

WMH can negatively impact cognitive function, but 
associations with memory have been less consistent 
compared to those with executive function (for review 
see [50]). With the exception of the external capsule, we 
found rather substantial evidence supporting the associa-
tion between WMH and worse cognitive performance at 
baseline and over time, affecting memory and executive 
function likewise. The fact that these relationships were 
evident in a non-demented sample and persisted even 
after adjusting for hypertension or Aβ positivity high-
lights, once again, the predictive value of WMH in the 
context of cognitive impairment (Table  3). Intriguingly, 
hypertension was associated with executive function, 
memory, and baseline and longitudinal global cognitive 
function only via splenial WMH, a white matter struc-
ture responsible for cognitive processing and a hub where 
distinct pathologies impact the neural circuitries inter-
connecting the temporal and occipital regions of both 
cerebral hemispheres [7, 51–53]. White matter damage in 
this region, as associated with cardiovascular risk, could 
be expected to translate to lower cognitive functioning 
in global cognition but also in discrete domains [7]. In 
previous studies though, posterior/splenial WMH have 
been found associated with executive (including atten-
tion), but not memory function [7, 10]. Differences may 
arise from WMH quantification methods and/or smaller 
sample sizes including AD patients only (not individuals 
with SCD/MCI), in whom largely advanced (medial tem-
poral lobe) AD pathology is the major driver for memory 
decline, possibly “diluting” concurrent memory effects of 
posterior WMH.

Contrary to our expectations and to strong evidence 
from large longitudinal population-based studies (for 
review, see [6]), we did not see a direct effect of hyperten-
sion effect on cognition but rather an indirect-only effect 
via splenial WMH. This finding might reflect a selection 
bias of the DELCODE study: exclusion of individuals with 
advanced vascular disease, which would likewise result 
in the exclusion of those with severe and uncontrolled 
hypertension. This constellation additionally explains 
the somewhat lower prevalence of arterial hypertension 
(nearly 54% compared to 63%), with a slightly higher 
number of Aβ positives (35% compared to a range of 17 
to 34%) compared to that in population-based cohorts 
aged over 60  years [54–56]. Our definition of arterial 
hypertension was based on retrospective screening of 
medical records for already existing hypertension diag-
noses, which might have missed those participants with 
recently, i.e. newly, diagnosed hypertension after baseline 
MRI, also contributing to lower prevalence.

This study has limitations. First, our imaging results 
are cross-sectional. While our findings suggest WMH 

are indeed spatially associated with both hypertension 
and Aβ positivity, they do not address causality (e.g. vas-
cular risk first, Aβ accumulation second). Longitudinal 
analysis of DELCODE imaging data might provide fur-
ther insights into the influence of lifestyle over time and 
help disentangle the mixed effects observed in this cross-
sectional study. Second, our mediation model investi-
gates whether WMH volume can mediate the association 
between Aβ positivity and hypertension on cognitive 
function. While this choice was based on a theoretical 
consideration [5, 6, 42, 43], a model where the AD and 
CSVD pathologies (here as Aβ accumulation and WMH 
burden) cyclically contribute to each other would also be 
feasible [2, 5, 57]. Third, the study of WMH probability 
patterns in other cohorts of individuals (e.g. whose ori-
gins are other than European; DELCODE participants are 
predominantly of European origins) with a high vascular 
but low AD profile or vice versa could be informative on 
the mechanisms leading to these findings in a more gen-
eral way. Further, we did not consider WMH patterns, 
which could be punctuated or confluent, for example, or 
the clinically established distinction between deep and 
periventricular WMH.

Conclusion
Our work points towards a large spatial overlap between 
the effect of arterial hypertension and Aβ build-up on 
WMH, with both constellations considered risk fac-
tors for white matter damage. Our work thus calls into 
question whether WMH are a core feature related to 
AD pathology, alternatively suggesting that white mat-
ter is vulnerable to both vascular and amyloid patholo-
gies. WMH-related deterioration of neural circuitries in 
the splenium of the corpus callosum and optic radiation 
seem to play a role in the association between cognition 
and both arterial hypertension and Aβ positivity. It could 
therefore be a promising target to tackle the downstream 
damage related to the interacting and potentiating effect 
of multiple pathologies.
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