213 research outputs found

    Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction- a secondary analysis of TRUFFLE-trial

    Get PDF
    BACKGROUND: Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival after myocardial infarction in adult cardiology. Application of this method to fetal medicine has established significantly better identification than with short-term variation by computerized cardiotocography of growth-restricted fetuses. OBJECTIVE: The aim of this study was to determine the longitudinal progression of phase-rectified signal averaging indices in severely growth-restricted human fetuses and the prognostic accuracy of the technique in relation to perinatal and neurologic outcome. STUDY DESIGN: Raw data from cardiotocography monitoring of 279 human fetuses were obtained from 8 centers that took part in the multicenter European “TRUFFLE” trial on optimal timing of delivery in fetal growth restriction. Average acceleration and deceleration capacities were calculated by phase-rectified signal averaging to establish progression from 5 days to 1 day before delivery and were compared with short-term variation progression. The receiver operating characteristic curves of average acceleration and deceleration capacities and short-term variation were calculated and compared between techniques for short- and intermediate-term outcome. RESULTS: Average acceleration and deceleration capacities and short-term variation showed a progressive decrease in their diagnostic indices of fetal health from the first examination 5 days before delivery to 1 day before delivery. However, this decrease was significant 3 days before delivery for average acceleration and deceleration capacities, but 2 days before delivery for short-term variation. Compared with analysis of changes in short-term variation, analysis of (delta) average acceleration and deceleration capacities better predicted values of Apgar scores <7 and antenatal death (area under the curve for prediction of antenatal death: delta average acceleration capacity, 0.62 [confidence interval, 0.19–1.0]; delta short-term variation, 0.54 [confidence interval, 0.13–0.97]; P=.006; area under the curve for prediction Apgar <7: average deceleration capacity <24 hours before delivery, 0.64 [confidence interval, 0.52–0.76]; short-term variation <24 hours before delivery, 0.53 [confidence interval, 0.40–0.65]; P=.015). Neither phase-rectified signal averaging indices nor short-term variation showed predictive power for developmental disability at 2 years of age (Bayley developmental quotient, <95 or <85). CONCLUSIONS: The phase-rectified signal averaging method seems to be at least as good as short-term variation to monitor progressive deterioration of severely growth-restricted fetuses. Our findings suggest that for short-term outcomes such as Apgar score, phase-rectified signal averaging indices could be an even better test than short-term variation. Overall, our findings confirm the possible value of prospective trials based on phase-rectified signal averaging indices of autonomic nervous system of severely growth-restricted fetuses

    Experimental glomerulonephritis induced by hydrocarbon exposure: A systematic review

    Get PDF
    BACKGROUND: Much epidemiological evidence suggests that hydrocarbon exposure may induce glomerulonephritis and worsen its course in many patients. The mechanisms are unknown, however, no specific microscopic pattern has been identified, and it has also been argued that hydrocarbon exposure causes tubular damage mainly. Studying experimental animals may best answer these questions, and as no systematic review of glomerulonephritis produced experimentally by hydrocarbon exposure has been performed previously, I found it relevant to search for and analyse such studies. METHODS: Animal experiments having mimicked human glomerulonephritis by hydrocarbon exposure were sought on Medline and Toxnet RESULTS: Twenty-six experiments using thirteen different hydrocarbons were identified. Several human subtypes were observed including IgA nephritis, mesangial, proliferative and extracapillary glomerulonephritis, focal and focal-segmental sclerosis, minimal change nephropathy, anti-GBM and anti-TBM nephritis, and glomerulonephritis associated with peiarteritis nodosa. Glomerular proteinuria was seen in 10/12 experiments that included urine analyses, and renal failure in 5/8 experiments that included measurements of glomerular function. All experiments resulted in various degrees of tubular damage as well. In most studies, where the animals were examined at different times during or after the exposure, the renal microscopic and functional changes were seen immediately, whereas deposits of complement and immunoglobulins appeared late in the course, if at all. CONCLUSION: These experiments are in accord with epidemiological evidence that hydrocarbon exposure may cause glomerulonephritis and worsen renal function. Probable mechanisms include an induction of autologous antibodies and a disturbance of normal immunological functions. Also, tubular damage may increase postglomerular resistance, resulting in a glomerular deposition of macromolecules. In most models a causal role of glomerular immune complex formation was unlikely, but may rather have been a secondary phenomenon. As most glomerulonephritis subgroups were seen and as some of the hydrocarbons produced more than one subgroup, the microscopic findings in a patient cannot be used as a clue to the causation of his disease. By the same reason, the lack of a specific histological pattern in patients with glomerulonephritis assumed to have been caused by hydrocarbon exposure is not contradictive

    The TRUFFLE study; fetal monitoring indications for delivery in 310 IUGR infants with 2 year's outcome delivered before 32 weeks of gestation.

    Get PDF
    OBJECTIVE: In the TRUFFLE study on outcome of early fetal growth restriction women were allocated to three timing of delivery plans according to antenatal monitoring strategies based on reduced computerized cardiotocographic heart rate short term variation (c-CTG STV) , early Ductus Venosus (DV p95) or late DV (DV noA) changes. However, many infants were per protocol delivered because of 'safety net' criteria, or for maternal indications, or 'other fetal indications' or after 32 weeks of gestation when the protocol was not applied anymore. It was the objective of the present post-hoc sub-analysis to investigate the indications for delivery in relation to outcome at 2 years in infants delivered before 32 weeks, to come to a further refinement of management proposals. METHODS: we included all 310 cases of the TRUFFLE study with known outcome at 2 years corrected age and 7 perinatal and infant deaths, apart from 7 cases with an inevitable death. Data were analyzed according to the randomization allocation and specified for the intervention indication. RESULTS: overall only 32% of fetuses born alive were delivered according to the specified monitoring parameter for indication for delivery. 38% were delivered because of safety net criteria, 15% because of other fetal reasons and 15% because of maternal reasons. In the c-CTG arm 51% of infants were delivered because of reduced STV. In the DV p95 arm 34% were delivered because of an abnormal DV and in the DV no A wave arm only 10% of cases were delivered accordingly. The majority of fetuses in the DV arms delivered for safety net criteria were delivered because of spontaneous decelerations. Two year's intact survival was highest in the combined DV arms as compared to the c-CTG arm (p = 0.05 when life born, p = 0.21 including fetal death), with no difference between the DV arms. Poorer outcome in the c-CTG arm was restricted to fetuses delivered because of decelerations in the safety net subgroup. Infants delivered because of maternal reasons had the highest birth weight and a non-significant higher intact survival. CONCLUSIONS: In this sub-analysis of fetuses delivered before 32 weeks the majority of infants were delivered for other reasons than according to the allocated CTG or DV monitoring strategy. Since in the DV arms CTG criteria were used as safety net criteria, but in the c-CTG arms no DV safety net criteria were applied, we speculate that the slightly poorer outcome in the CTG arm might be explained by absence of DV data. Optimal timing of delivery of the early IUGR fetus may therefore best be achieved by monitoring them longitudinally with DV and CTG monitoring

    How to monitor pregnancies complicated by fetal growth restriction and delivery below 32 weeks: a post-hoc sensitivity analysis of the TRUFFLE-study.

    Get PDF
    OBJECTIVES: In the recent TRUFFLE study it appeared that, in pregnancies complicated by fetal growth restriction (FGR) between 26 and 32 weeks, monitoring of the ductus venosus (DV) combined with computerised cardiotocography (cCTG) as a trigger for delivery, increased the chance of infant survival without neurological impairment. However, concerns in interpretation were raised as DV monitoring appeared associated with a non-significant increase in fetal death, and part of the infants were delivered after 32 weeks, after which the study protocol was no longer applied. This secondary sensitivity analysis focuses on women who delivered before 32 completed weeks, and analyses fetal death cases in detail. METHODS: We analysed the monitoring data of 317 women who delivered before 32 weeks, excluding women with absent infant outcome data or inevitable perinatal death. The association of the last monitoring data before delivery and infant outcome was assessed by multivariable analysis. RESULTS: The primary outcome (two year survival without neurological impairment) occurred more often in the two DV groups (both 83%) than in the CTG-STV group (77%), however the difference was not statistically significant (p = 0.21). Nevertheless, in surviving infants 93% was free of neurological impairment in the DV groups versus 85% in the CTG-STV group (p = 0.049). All fetal deaths (n = 7) occurred in women allocated to DV monitoring, which explains this difference. Assessment of the monitoring parameters that were obtained shortly before fetal death in these 7 cases showed an abnormal CTG in only one. Multivariable regression analysis of factors at study entry demonstrated that higher gestational age, larger estimated fetal weight 50th percentile ratio and lower U/C ratio were significantly associated with the (normal) primary outcome. Allocation to the DV groups had a smaller effect, but remained in the model (p < 0.1). Assessment of the last monitoring data before delivery showed that in the CTG-STV group abnormal fetal arterial Doppler was significantly associated with adverse outcome. In contrast, in the DV groups an abnormal DV was the only fetal monitoring parameter that was associated with adverse infant outcome, while fetal arterial Doppler, STV below CTG-group cut-off or recurrent fetal heart rate decelerations were not. CONCLUSIONS: In accordance with the results of the overall TRUFFLE study of the monitoring-intervention management of very early severe FGR we found that the difference in the proportion of infants surviving without neuroimpairment (the primary endpoint) was non-significant when comparing timing of delivery with or without changes in the DV waveform. However, the uneven distribution of fetal deaths towards the DV groups was likely by chance, and among surviving children neurological outcomes were better. Before 32 weeks, delaying delivery until abnormalities in DVPI or STV and/or recurrent decelerations occur, as defined by the study protocol, is therefore probably safe and possibly benefits long-term outcome

    Longitudinal study of computerised cardiotocography in early fetal growth restriction.

    Get PDF
    OBJECTIVES: To explore if in early fetal growth restriction (FGR) the longitudinal pattern of short-term fetal heart rate (FHR) variation (STV) can be used for identifying imminent fetal distress and if abnormalities of FHR registration associate with two-year infant outcome. METHODS: The original TRUFFLE study assessed if in early FGR the use of ductus venosus Doppler pulsatility index (DVPI), in combination with a safety-net of very low STV and / or recurrent decelerations, could improve two-year infant survival without neurological impairment in comparison to computerised cardiotocography (cCTG) with STV calculation only. For this secondary analysis we selected women, who delivered before 32 weeks, and who had consecutive STV data for more than 3 days before delivery, and known infant two-year outcome data. Women who received corticosteroids within 3 days of delivery were excluded. Individual regression line algorithms of all STV values except the last one were calculated. Life table analysis and Cox regression analysis were used to calculate the day by day risk for a low STV or very low STV and / or FHR decelerations (DVPI group safety-net) and to assess which parameters were associated to this risk. Furthermore, it was assessed if STV pattern, lowest STV value or recurrent FHR decelerations were associated with two-year infant outcome. RESULTS: One hundred and fourty-nine women matched the inclusion criteria. Using the individual STV regression lines prediction of a last STV below the cCTG-group cut-off had a sensitivity of 0.42 and specificity of 0.91. For each day after inclusion the median risk for a low STV(cCTG criteria) was 4% (Interquartile range (IQR) 2% to 7%) and for a very low STV and / or recurrent decelerations (DVPI safety-net criteria) 5% (IQR 4 to 7%). Measures of STV pattern, fetal Doppler (arterial or venous), birthweight MoM or gestational age did not improve daily risk prediction usefully. There was no association of STV regression coefficients, a last low STV or /and recurrent decelerations with short or long term infant outcomes. CONCLUSION: The TRUFFLE study showed that a strategy of DVPI monitoring with a safety-net delivery indication of very low STV and / or recurrent decelerations could increase infant survival without neurological impairment at two years. This post-hoc analysis demonstrates that in early FGR the day by day risk of an abnormal cCTG as defined by the DVPI protocol safety-net criteria is 5%, and that prediction of this is not possible. This supports the rationale for cCTG monitoring more often than daily in these high-risk fetuses. Low STV and/or recurrent decelerations were not associated with adverse infant outcome and it appears safe to delay intervention until such abnormalities occur, as long as DVPI is in the normal range
    corecore