196 research outputs found
Recommended from our members
Routes To the Renaissance for Pittsfield, MA
The goal of the Master of Regional Planning Studio is to develop a student’s techniques for collecting, analyzing, and synthesizing spatial and non-spatial data and then presenting that collective data in a manner (i.e., report, video, presentation, and charettes) that is understandable to academics, professionals, and the public. Planning Studio allows students to integrate knowledge from coursework and research, and apply such knowledge to resolving representative planning problems. At UMASS Amherst, these problems are found in neighborhood, rural, urban, and/or regional settings.
In the fall of 2015, the City of Pittsfield contracted the MRP Studio to create a vision plan to connect the goal’s of its Master Plan in 2009 to current development regulations that encourage development and redevelopment of an appropriate size, scale and design that meets the short term and long term vision of the community. The vision plan encompasses the following: Spatial and Physical Boundaries of Major Gateway Corridors: Analyze the major gateways and develop tools to make them more welcoming. Permitted Use Table and Definitions: Review, clarify, and consolidate the land-uses listed in the table to assess deficiencies and unclear definitions. Design Guidelines: Create a manual to guide architectural aesthetic standards for new retail developments. Sign Ordinance: Implement a streamlined regulation that improves sign quality. Site Plan Review: Develop thresholds to create clearer processes for review of development projects. Resolution for Split Parcels: Identify all properties that fall within two zoning districts and develop a mitigation tool. Pro Forma and Multi-Family Housing: Develop a financial model that will estimate the construction and maintenance cost of multi-family housing units and make projections for new development’s financial return
Phase-Coherent Dynamics of a Superconducting Flux Qubit with Capacitive-Bias Readout
We present a systematic study of the phase-coherent dynamics of a
superconducting three-Josephson-junction flux qubit. The qubit state is
detected with the integrated-pulse method, which is a variant of the pulsed
switching DC SQUID method. In this scheme the DC SQUID bias current pulse is
applied via a capacitor instead of a resistor, giving rise to a narrow
band-pass instead of a pure low-pass filter configuration of the
electromagnetic environment. Measuring one and the same qubit with both setups
allows a direct comparison. With the capacitive method about four times faster
switching pulses and an increased visibility are achieved. Furthermore, the
deliberate engineering of the electromagnetic environment, which minimizes the
noise due to the bias circuit, is facilitated. Right at the degeneracy point
the qubit coherence is limited by energy relaxation. We find two main noise
contributions. White noise is limiting the energy relaxation and contributing
to the dephasing far from the degeneracy point. 1/f-noise is the dominant
source of dephasing in the direct vicinity of the optimal point. The influence
of 1/f-noise is also supported by non-random beatings in the Ramsey and spin
echo decay traces. Numeric simulations of a coupled qubit-oscillator system
indicate that these beatings are due to the resonant interaction of the qubit
with at least one point-like fluctuator, coupled especially strongly to the
qubit.Comment: Minor changes. 21 pages, 15 figure
The crossroads of tradition and modern technology: integrative approaches to studying carnivores in low density ecosystems
The study of large carnivores in semi-arid ecosystems presents inherent challenges due to their low densities, extensive home ranges, and elusive nature. We explore the potential for the synthesis of traditional knowledge (i.e. art of tracking) and modern technology to address challenges in conservation and wildlife research in these challenging environments. Our research focuses on the African lion (Panthera leo) in the Central Kalahari region of Botswana as a model system to demonstrate the potential of this integrative approach. Combining GPS tracking and traditional San trackers’ expertise, we present two case studies: (1) the individual identification of lions via a combination of tracking and footprint analysis and (2) the monitoring of territorial behavior through a combination of GPS technology (i.e. GPS collars and handheld GPS devices) and non-invasive tracking. These approaches enhance our understanding of carnivore ecology as well as support conservation efforts by offering a non-invasive, cost-effective, and highly accurate means of monitoring populations. Our findings underscore the value of merging traditional tracking skills with contemporary analytical and technological developments to offer new insights into the ecology of carnivores in challenging environments. This approach not only improves data collection accuracy and efficiency but also fosters a deeper understanding of wildlife, ensuring the conservation and sustainable management of these species. Our work advocates for the inclusion of indigenous knowledge in conservation science, highlighting its relevance and applicability across various disciplines, thereby broadening the methodologies used to study wildlife, monitor populations, and inform conservation strategies
Bmp and Nodal Independently Regulate lefty1 Expression to Maintain Unilateral Nodal Activity during Left-Right Axis Specification in Zebrafish
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning
Rasl11b Knock Down in Zebrafish Suppresses One-Eyed-Pinhead Mutant Phenotype
The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFβ/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep−/− mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors
Alphaviruses detected in mosquitoes in the North-Eastern regions of South Africa, 2014 to 2018
The prevalence and distribution of African alphaviruses such as chikungunya have increased in recent years. Therefore, a better understanding of the local distribution of alphaviruses in vectors across the African continent is important. Here, entomological surveillance was performed from 2014 to 2018 at selected sites in north-eastern parts of South Africa where alphaviruses have been identified during outbreaks in humans and animals in the past. Mosquitoes were collected using a net, CDC-light, and BG-traps. An alphavirus genus-specific nested RT-PCR was used for screening, and positive pools were confirmed by sequencing and phylogenetic analysis. We collected 64,603 mosquitoes from 11 genera, of which 39,035 females were tested. Overall, 1462 mosquito pools were tested, of which 21 were positive for alphaviruses. Sindbis (61.9%, N = 13) and Middelburg (28.6%, N = 6) viruses were the most prevalent. Ndumu virus was detected in two pools (9.5%, N = 2). No chikungunya positive pools were identified. Arboviral activity was concentrated in peri-urban, rural, and conservation areas. A range of Culicidae species, including Culex univittatus, Cx. pipiens s.l., Aedes durbanensis, and the Ae. dentatus group, were identified as potential vectors. These findings confirm the active circulation and distribution of alphaviruses in regions where human or animal infections were identified in South Africa.Environmental Biolog
Metacognitions about desire thinking predict the severity of binge eating in a sample of Italian women
In this study, our principal aim was to investigate whether metacognitions about desire thinking predict the severity of binge eating in women and, if so, whether this relationship is independent of age, self-reported body mass index (BMI), negative affect, irrational food beliefs and craving. One hundred and four women, consisting of 32 consecutive patients with binge eating disorder undergoing initial assessment for cognitive therapy for eating disorders, 39 moderate binge eaters, and 33 non-binge eaters (both from the general population), completed the following measures: Self-reported BMI, Hospital Anxiety and Depression Scale, Irrational Food Beliefs Scale, General Craving Scale, Metacognitions about Desire Thinking Questionnaire, and Binge Eating Scale. A series of Spearman's rho correlation analyses revealed that self-reported BMI, anxiety, depression, irrational food beliefs, craving, and all three factors of the metacognitions about desire thinking questionnaire were significantly associated with the severity of binge eating. A stepwise regression analysis identified self-reported BMI, craving, and negative metacognitions about desire thinking as significant predictors of the severity of binge eating. These results, taken together, highlight the possible role of metacognitions about desire thinking in predicting the severity of binge eating. The clinical implications of these findings are discussed
Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED
Superconducting qubits behave as artificial two-level atoms and are used to
investigate fundamental quantum phenomena. In this context, the study of
multi-photon excitations occupies a central role. Moreover, coupling
superconducting qubits to on-chip microwave resonators has given rise to the
field of circuit QED. In contrast to quantum-optical cavity QED, circuit QED
offers the tunability inherent to solid-state circuits. In this work, we report
on the observation of key signatures of a two-photon driven Jaynes-Cummings
model, which unveils the upconversion dynamics of a superconducting flux qubit
coupled to an on-chip resonator. Our experiment and theoretical analysis show
clear evidence for the coexistence of one- and two-photon driven level
anticrossings of the qubit-resonator system. This results from the symmetry
breaking of the system Hamiltonian, when parity becomes a not well-defined
property. Our study provides deep insight into the interplay of multiphoton
processes and symmetries in a qubit-resonator system.Comment: Accepted for publication in Nature Physics, 8 pages, 4 figure
- …