52 research outputs found

    Measurement-Based Linear Optics

    Get PDF
    © 2017 American Physical Society. A major challenge in optical quantum processing is implementing large, stable interferometers. We offer a novel approach: virtual, measurement-based interferometers that are programed on the fly solely by the choice of homodyne measurement angles. The effects of finite squeezing are captured as uniform amplitude damping. We compare our proposal to existing (physical) interferometers and consider its performance for BosonSampling, which could demonstrate postclassical computational power in the near future. We prove its efficiency in time and squeezing (energy) in this setting

    Towards universal quantum computation through relativistic motion

    Get PDF
    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes

    Tachyonic media in analog models of special relativity

    Get PDF
    In sonic models of special relativity, the fact that the sonic medium violates (ordinary) Lorentz symmetry is apparent to observers external to the sonic medium but not to a class of observers existing within the medium itself. We show that the situation is symmetric: internal observers will judge physics in the external laboratory to violate their own sonic Lorentz symmetries. We therefore treat all observers on an equal footing such that each is able to retain a commitment to their own Lorentz symmetries. We then generalize beyond the case of subsystem-environment decompositions to situations in which there exist multiple phonon fields, all obeying Lorentz symmetries but with different invariant speeds. In such cases, we argue that all observers have freedom to choose which field is symmetry preserving, and so - in a certain precise sense - which other fields are perceived as having an "ether."This choice is influenced, but not determined, by a desire for simplicity in the description of physical laws. Sending information faster than sound serves as a model of tachyonic signaling to a distant receiver. Immutable causality of the laboratory setup when perceived externally to a sonic medium manifests internally through the confinement of the tachyons to an apparent ether (with a rest frame), which we call a "tachyonic medium,"thereby preventing tachyonic exchange from emulating the scenario of a round-trip signal traveling into an observer's past causal cone. The assignment of sonic-Lorentz-violating effects to fields that obey "photonic"Lorentz symmetries thus ensures that causality associated with the "sonic"Lorentz symmetries is preserved

    Block weighing matrices

    Full text link

    From the Bloch sphere to phase space representations with the Gottesman-Kitaev-Preskill encoding

    Full text link
    In this work, we study the Wigner phase-space representation of qubit states encoded in continuous variables (CV) by using the Gottesman-Kitaev-Preskill (GKP) mapping. We explore a possible connection between resources for universal quantum computation in discrete-variable (DV) systems, i.e. non-stabilizer states, and negativity of the Wigner function in CV architectures, which is a necessary requirement for quantum advantage. In particular, we show that the lowest Wigner logarithmic negativity of qubit states encoded in CV with the GKP mapping corresponds to encoded stabilizer states, while the maximum negativity is associated with the most non-stabilizer states, H-type and T-type quantum states.Comment: (v1) Accepted for publication in the Springer's "Mathematics for Industry" series. (v2) Typo in the abstract fixed; URL of the conference where the paper has been presented added: International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), held in September 2019 in Fukuoka, Japan (https://www.mqc2019.org/mqc2019/program

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Summary

    No full text

    Cluster States and One-Way Quantum Computation

    No full text
    corecore