151 research outputs found

    Whole blood assessment of antigen specific cellular immune response by real time quantitative PCR: a versatile monitoring and discovery tool

    Get PDF
    BACKGROUND: Monitoring of cellular immune responses is indispensable in a number of clinical research areas, including microbiology, virology, oncology and autoimmunity. Purification and culture of peripheral blood mononuclear cells and rapid access to specialized equipment are usually required. We developed a whole blood (WB) technique monitoring antigen specific cellular immune response in vaccinated or naturally sensitized individuals. METHODS: WB (300 microl) was incubated at 37 degrees C with specific antigens, in the form of peptides or commercial vaccines for 5-16 hours. Following RNAlater addition to stabilize RNA, the mixture could be stored over one week at room temperature or at 4 degrees C. Total RNA was then extracted, reverse transcribed and amplified in quantitative real-time PCR (qRT-PCR) assays with primers and probes specific for cytokine and/or chemokine genes. RESULTS: Spiking experiments demonstrated that this technique could detect antigen specific cytokine gene expression from 50 cytotoxic T lymphocytes (CTL) diluted in 300 microl WB. Furthermore, the high sensitivity of this method could be confirmed ex-vivo by the successful detection of CD8+ T cell responses against HCMV, EBV and influenza virus derived HLA-A0201 restricted epitopes, which was significantly correlated with specific multimer staining. Importantly, a highly significant (p = 0.000009) correlation between hepatitis B surface antigen (HBsAg) stimulated IL-2 gene expression, as detectable in WB, and specific antibody titers was observed in donors vaccinated against hepatitis B virus (HBV) between six months and twenty years before the tests. To identify additional markers of potential clinical relevance, expression of chemokine genes was also evaluated. Indeed, HBsAg stimulated expression of MIP-1beta (CCL4) gene was highly significantly (p = 0.0006) correlated with specific antibody titers. Moreover, a longitudinal study on response to influenza vaccine demonstrated a significant increase of antigen specific IFN-gamma gene expression two weeks after immunization, declining thereafter, whereas increased IL-2 gene expression was still detectable four months after vaccination. CONCLUSION: This method, easily amenable to automation, might qualify as technology of choice for high throughput screening of immune responses to large panels of antigens from cohorts of donors. Although analysis of cytokine gene expression requires adequate laboratory infrastructure, initial antigen stimulation and storage of test probes can be performed with minimal equipment and time requirements. This might prove important in "field" studies with difficult access to laboratory facilities

    In Vitro Modeling of Tumor-Immune System Interaction.

    Get PDF
    Immunotherapy has emerged during the past two decades as an innovative and successful form of cancer treatment. However, frequently, mechanisms of actions are still unclear, predictive markers are insufficiently characterized, and preclinical assays for innovative treatments are poorly reliable. In this context, the analysis of tumor/immune system interaction plays key roles, but may be unreliably mirrored by in vivo experimental models and standard bidimensional culture systems. Tridimensional cultures of tumor cells have been developed to bridge the gap between in vitro and in vivo systems. Interestingly, defined aspects of the interaction of cells from adaptive and innate immune systems and tumor cells may also be mirrored by 3D cultures. Here we review in vitro models of cancer/immune cell interaction and we propose that updated technologies might help develop innovative treatments, identify biologicals of potential clinical relevance, and select patients eligible for immunotherapy treatments

    eLife

    Get PDF
    The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4-TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A-TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation

    Gain in cellular organization of inflammatory breast cancer: A 3D in vitro model that mimics the in vivo metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The initial step of metastasis in carcinomas, often referred to as the epithelial-mesenchymal transition (EMT), occurs via the loss of adherens junctions (e.g. cadherins) by the tumor embolus. This leads to a subsequent loss of cell polarity and cellular differentiation and organization, enabling cells of the embolus to become motile and invasive. However highly malignant inflammatory breast cancer (IBC) over-expresses E-cadherin. The human xenograft model of IBC (MARY-X), like IBC, displays the signature phenotype of an exaggerated degree of lymphovascular invasion (LVI) <it>in situ </it>by tumor emboli. An intact E-cadherin/α, β-catenin axis mediates the tight, compact clump of cells found both <it>in vitro </it>and <it>in vivo </it>as spheroids and tumor emboli, respectively.</p> <p>Methods</p> <p>Using electron microscopy and focused ion beam milling to acquire <it>in situ </it>sections, we performed ultrastructural analysis of both an IBC and non-IBC, E-cadherin positive cell line to determine if retention of this adhesion molecule contributed to cellular organization.</p> <p>Results</p> <p>Here we report through ultrastructural analysis that IBC exhibits a high degree of cellular organization with polar elements such as apical/lateral positioning of E-cadherin, apical surface microvilli, and tortuous lumen-like (canalis) structures. In contrast, agarose-induced spheroids of MCF-7, a weakly invasive E-cadherin positive breast carcinoma cell line, do not exhibit ultrastructural polar features.</p> <p>Conclusions</p> <p>This study has determined that the highly metastatic IBC with an exaggerated malignant phenotype challenges conventional wisdom in that instead of displaying a loss of cellular organization, IBC acquires a highly structured architecture.</p> <p>These findings suggest that the metastatic efficiency might be linked to the formation and maintenance of these architectural features. The comparative architectural features of both the spheroid and embolus of MARY-X provide an <it>in vitro </it>model with tractable <it>in vivo </it>applications.</p

    Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells

    Get PDF
    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma

    Anti-cancer drug validation: the contribution of tissue engineered models

    Get PDF
    Abstract Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current Bstate of art^ on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their studyThis article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This article was also supported by the EU Framework Programme for Research and Innovation HORIZON 2020 (H2020) under grant agreement n° 668983 — FoReCaST. FCT distinction attributed to Joaquim M. Oliveira (IF/00423/2012) and Vitor M. Correlo (IF/01214/2014) under the Investigator FCT program is also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    Le pneumocoque (un redoutable pathogène)

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF
    corecore