23 research outputs found

    kNACking on heaven’s door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds?

    Get PDF
    Senescence is a coordinated process where a plant, or a part of it, engages in programmed cell death to salvage nutrients by remobilizing them to younger tissues or to developing seeds. As Fe and Zn deficiency are the two major nutritional disorders in humans, increased concentration of these nutrients through biofortification in cereal grains is a long-sought goal. Recent evidences point to a link between the onset of leaf senescence and increased Fe and Zn remobilization. In wheat, one member of the NAC (NAM, ATAF, and CUC) transcription factor (TF) family (NAM-B1) has a major role in the process, probably regulating key genes for the early onset of senescence, which results in higher Fe and Zn concentrations in grains. In rice, the most important staple food for nearly half of the world population, the NAM-B1 ortholog does not have the same function. However, other NAC proteins are related to senescence, and could be playing roles on the same remobilization pathway. Thus, these genes are potential tools for biofortification strategies in rice. Here we review the current knowledge on the relationship between senescence, Fe and Zn remobilization and the role of NAC TFs, with special attention to rice. We also propose a working model for OsNAC5, which would act on the regulation of nicotianamine (NA) synthesis and metal–NA remobilization

    Caracterização de novos transportadores da família CDF envolvidos na homeostase de Zn e Mn em plantas de arroz (Oryza sativa)

    Get PDF
    A homeostase de metais é mantida nas células vegetais por transportadores especializados que compartimentalizam ou realizam o efluxo dos íons metálicos, mantendo as concentrações citosólicas dentro de uma faixa adequada. OsMTP1 e OsMTP11 são membros da família de transportadores de metais CDF/MTP em Oryza sativa, e acredita-se que eles possuem papéis importantes na homeostase de Zn e Mn em plantas de arroz, respectivamente. A complementação funcional do mutante de Arabidopsis mtp1-1 pela expressão ectópica de OsMTP1 demonstra que esta proteína transporta Zn in planta. Embora a localização subcelular de OsMTP1 tenha sido previamente caracterizada como de membrana plasmática, nossos resultados indicam localização no tonoplasto. A expressão heteróloga de OsMTP1 em levedura mutante zrc1 cot1 resgatou a hipersensibilidade do mutante a Zn; OsMTP1 também mitigou em algum nível a sensibilidade de zrc1 cot1 a Co; e complementou a hipersensibilidade a Fe e Cd dos mutantes ccc1 e ycf1, respectivamente, quando testados em baixas concentrações dos metais correspondentes. Esses resultados sugerem que OsMTP1 transporta Zn, mas também Co, Fe e Cd, talvez com afinidade mais baixa. Estudos com mutações sítio-dirigidas nos permitiram identificar duas substituições em OsMTP1, L82F e H90D, que parecem alterar a função de transporte de OsMTP1. OsMTP1ΔL82F ainda transporta baixos níveis de Zn, com afinidade aumentada pra Fe e Co, enquanto OsMTP1ΔH90D elimina completamente o transporte de Zn e aumenta o transporte de Fe. Além disso, mostramos evidências do papel de OsMTP11 no transporte de Mn. A expressão heteróloga de OsMTP11 no mutante de levedura pmr1 complementou parcialmente a hipersensibilidade deste a Mn. Identificamos quatro resíduos possivelmente envolvidos na função de transporte de OsMTP11: as substituições D267H, D162A e E213G reduziram o resgate da hipersensibilidade a Mn em diferentes níveis; enquanto L150S complementou totalmente a hipersensibilidade do mutante pmr1. Os resultados apresentados neste trabalho são novas contribuições para a área de nutrição mineral de plantas e podem ser úteis em aplicações biotecnológicas como fitorremediação e biofortificação.Heavy metal homeostasis is maintained in plant cells by specialized transporters that compartmentalize or efflux metal ions, maintaining cytosolic concentrations within a narrow range. OsMTP1 and OsMTP11 are members of the CDF/MTP family of metal cation transporters in Oryza sativa, and are believed to play important roles in Zn and Mn homeostasis in rice, respectively. Functional complementation of the Arabidopsis T-DNA insertion mutant mtp1-1 demonstrates that OsMTP1 transports Zn in planta. Although OsMTP1 had been previously suggested to be targeted to the plasma membrane, results here indicate localization at the tonoplast. Heterologous expression of OsMTP1 in the yeast mutant zrc1 cot1 complemented the Zn-hypersensitivity of this mutant; OsMTP1 could also alleviate to some extent the Co sensitivity of zrc1 cot1; and rescue Fe and Cd hypersensitivity in ccc1 and ycf1 mutants, respectively, when tested at low concentrations of corresponding metals. These results suggest that OsMTP1 transports Zn but also Co, Fe and Cd, perhaps with lower affinity. Site-directed mutagenesis studies allowed us to identify two substitutions in OsMTP1, L82F and H90D, which appear to alter the transport function of OsMTP1. OsMTP1ΔL82F can still transport low levels of Zn, with enhanced affinity for Fe and Co, while OsMTP1ΔH90D completely abolishes Zn transport but improves Fe transport. In addition, we show evidence for a role of OsMTP11 in Mn transport. Heterologous expression of OsMTP11 in the yeast mutant pmr1 partially complemented the Mn-hypersensitivity of this mutant. It was identified four residues possibly involved in OsMTP11 transport function; D267H, D162A and E213G reduced the Mn-hypersensitivity rescuing capacity in different levels; and L150S fully rescued Mn-hypersensitivity in the pmr1 mutant. The results presented here are novel contributions to the field of plant mineral nutrition and may be useful in future biotechnological applications such as phytoremediation and biofortification

    A walk on the wild side: Oryza species as source for rice abiotic stress tolerance

    No full text
    Abstract Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement
    corecore