98 research outputs found

    Seeking Salient Facial Regions for Cross-Database Micro-Expression Recognition

    Full text link
    Cross-Database Micro-Expression Recognition (CDMER) aims to develop the Micro-Expression Recognition (MER) methods with strong domain adaptability, i.e., the ability to recognize the Micro-Expressions (MEs) of different subjects captured by different imaging devices in different scenes. The development of CDMER is faced with two key problems: 1) the severe feature distribution gap between the source and target databases; 2) the feature representation bottleneck of ME such local and subtle facial expressions. To solve these problems, this paper proposes a novel Transfer Group Sparse Regression method, namely TGSR, which aims to 1) optimize the measurement and better alleviate the difference between the source and target databases, and 2) highlight the valid facial regions to enhance extracted features, by the operation of selecting the group features from the raw face feature, where each region is associated with a group of raw face feature, i.e., the salient facial region selection. Compared with previous transfer group sparse methods, our proposed TGSR has the ability to select the salient facial regions, which is effective in alleviating the aforementioned problems for better performance and reducing the computational cost at the same time. We use two public ME databases, i.e., CASME II and SMIC, to evaluate our proposed TGSR method. Experimental results show that our proposed TGSR learns the discriminative and explicable regions, and outperforms most state-of-the-art subspace-learning-based domain-adaptive methods for CDMER

    Binocular balance across spatial frequency in anisomyopia

    Get PDF
    PurposeAnisomyopia is prevalent in myopia and studies have reported it exhibits impaired binocular function. We investigated the binocular balance across spatial frequency in adults with anisomyopia and compared it to in individuals with less differences in refractive error, and examined whether ocular characteristics can predict binocular balance in anisomyopia.MethodsFifteen anisomyopes, 15 isomyopes and 12 emmetropes were recruited. Binocular balance was quantitatively measured at 0.5, 1, 2 and 4 c/d. The first two groups of the observers were tested with and without optical correction with contact lenses. Emmetropes were tested without optical correction.ResultsBinocular balance across spatial frequency in optically corrected anisomyopes and isomyopes, as well as emmetropes were found to be similar. Their binocular balance nevertheless still got worse as a function of spatial frequency. However, before optical correction, anisomyopes but not isomyopes showed significant imbalance at higher spatial frequencies. There was a significant correlation between the dependence on spatial frequency of binocular imbalance in uncorrected anisomyopia and interocular difference in visual acuity, and between the dependence and interocular difference in spherical equivalent refraction.ConclusionAnisomyopes had intact binocular balance following correction across spatial frequency compared to those in isomyopes and emmetropes. Their balance was weakly correlated with their refractive status after optical correction. However, their binocular balance before correction and binocular improvement following optical correction were strongly correlated with differences in ocular characteristics between eyes

    Research trends and hot spots in global nanotechnology applications in liver cancer: a bibliometric and visual analysis (2000-2022)

    Get PDF
    BackgroundLiver cancer (LC) is one of the most common malignancies. Currently, nanotechnology has made great progress in LC research, and many studies on LC nanotechnology have been published. This study aims to discuss the current status, hot spots, and research trends in this field through bibliometric analysis.MethodsThe Web of Science Core Collection (WoSCC) database was searched for papers related to hepatocellular carcinoma (HCC) included from January 2000 to November 2022, and its research hotspots and trends were visualized and analyzed with the help of VOSviewer. In addition, a search was conducted to find LC papers related to nanotechnology. Then we used the visual analysis software VOSviewer and CiteSpace to evaluate the contributions of countries/regions, authors, and journals related to the topic and analyze keywords to understand the research priorities and hot spots in the field as well as the development direction.ResultsThere are 1908 papers in the highly cited literature on LC, and its research hotspots are pathogenesis, risk factors, and survival rate. The literature on the application of nanotechnology in LC had 921 papers. Among them, China (n=560, 60.8%) and the United States (n=170, 18.5%) were the countries with the highest number of published papers. Wang Yan (n=11) and Llovet JM (n=131) were the first authors and co-cited authors, respectively. The International Journal of Nanomedicine was the most prolific academic journal (n=41). In addition to “hepatocellular carcinoma” and “nanoparticles”, the most frequent keyword was “drug delivery”. In recent years, “metastasis” and “diagnosis” appeared in the keyword bursts. This indicates that the application of nanoparticles in the early diagnosis and drug delivery of LC (including liver metastasis) has a good prospect.ConclusionNanotechnology has received more and more attention in the medical field in recent years. As nanoparticles are easily localized in organelles and cells, they can increase drug permeability in tumor tissues, improve drug delivery efficiency and reduce drug toxicity. Our research results were the first scientific evaluation of the application of nanotechnology in LC, providing scholars with research hotspots and development trends

    Central Nervous System Involvement in ANCA-Associated Vasculitis: What Neurologists Need to Know

    Get PDF
    Objective: To provide a comprehensive review of the central nervous system (CNS) involvement in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), including the pathogenesis, clinical manifestations, ancillary investigations, differential diagnosis, and treatment. Particular emphasis is placed on the clinical spectrum and diagnostic testing of AAV.Recent Findings: AAV is a pauci-immune small-vessel vasculitis characterized by neutrophil-mediated vasculitis and granulomatousis. Hypertrophic pachymeninges is the most frequent CNS presentation. Cerebrovascular events, hypophysitis, posterior reversible encephalopathy syndrome (PRES) or isolated mass lesions may occur as well. Spinal cord is rarely involved. In addition, ear, nose and throat (ENT), kidney and lung involvement often accompany or precede the CNS manifestations. Positive ANCA testing is highly suggestive of the diagnosis, with each ANCA serotype representing different groups of AAV patients. Pathological evidence is the gold standard but not necessary. Once diagnosed, prompt initiation of induction therapy, including steroid and other immunosuppressants, can greatly mitigate the disease progression.Conclusions and Relevance: Early recognition of AAV as the underlying cause for various CNS disorders is important for neurologists. Ancillary investigations especially the ANCA testing can provide useful information for diagnosis. Future studies are needed to better delineate the clinical spectrum of CNS involvement in AAV and the utility of ANCA serotype to classify those patients.Evidence Review: We searched Pubmed for relevant case reports, case series, original research and reviews in English published between Sep 1st, 2001 and Sep 1st, 2018. The following search terms were used alone or in various combinations: “ANCA,” “proteinase 3/PR3-ANCA,” “myeloperoxidase/MPO-ANCA,” “ANCA-associated vasculitis,” “Wegener's granulomatosis,” “microscopic polyangiitis,” “Central nervous system,” “brain” and “spinal cord”. All articles identified were full-text papers

    One-plasmid double-expression system for preparation of MS2 virus-like particles packaging SARS-CoV-2 RNA

    Get PDF
    COVID-19 is a disease caused by a virus named SARS-CoV-2. SARS-CoV-2 is a single-stranded positive-sense RNA virus. Reverse transcription quantitative PCR (RT–qPCR) assays are the gold standard molecular test for detection of RNA viruses. The aim of this study was to construct an RNA-positive control based on MS2 phage-like particles (MS2 VLPs) to detect SARS-CoV-2 RNA. pCDFDuet-1 was used as a one-plasmid double-expression system to construct MS2 VLPs containing ssRNA of SARS-CoV-2. The sequence encoding one copy of maturase, His-tag and coat protein dimer was cloned and inserted into MCS1 of the plasmid; the fragment encoding protein N and ORF1ab from SARS-CoV-2 was cloned and inserted into MCS2. The prepared plasmid was transformed into Escherichia coli strain BL2 (DE3), and expression of the construct was induced by 1 mM isopropyl-L-thio-D-galactopyranoside (IPTG) at 30°C for 12 hours. MS2 VLPs were purified and collected with Ni-NTA affinity chromatography columns. The size and shape of the MS2 VLPs were verified by transmission electron microscopy, and the stability of MS2 VLP packaged RNA was evaluated by treatment with RNase A. Effects of storage temperature and buffer on MS2 VLP stability were also investigated. The results showed that SARS-CoV-2 MS2 VLPs could be successfully produced by this one-plasmid double-expression system. MS2 VLPs showed high stability and may be used as a positive control in molecular diagnosis of COVID-19

    Successional change in species composition alters climate sensitivity of grassland productivity.

    Get PDF
    Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8-year long-term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C3 -dominant plant community to a perennial C4 -dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from -17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time-dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change

    Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava

    Get PDF
    Owing to climate change impacts, waterlogging is a serious abiotic stress that affects crops, resulting in stunted growth and loss of productivity. Cassava (Manihot esculenta Grantz) is usually grown in areas that experience high amounts of rainfall; however, little research has been done on the waterlogging tolerance mechanism of this species. Therefore, we investigated the physiological responses of cassava plants to waterlogging stress and analyzed global gene transcription responses in the leaves and roots of waterlogged cassava plants. The results showed that waterlogging stress significantly decreased the leaf chlorophyll content, caused premature senescence, and increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves and roots. In total, 2538 differentially expressed genes (DEGs) were detected in the leaves and 13364 in the roots, with 1523 genes shared between the two tissues. Comparative analysis revealed that the DEGs were related mainly to photosynthesis, amino metabolism, RNA transport and degradation. We also summarized the functions of the pathways that respond to waterlogging and are involved in photosynthesis, glycolysis and galactose metabolism. Additionally, many transcription factors (TFs), such as MYBs, AP2/ERFs, WRKYs and NACs, were identified, suggesting that they potentially function in the waterlogging response in cassava. The expression of 12 randomly selected genes evaluated via both quantitative real-time PCR (qRT-PCR) and RNA sequencing (RNA-seq) was highly correlated (R2 = 0.9077), validating the reliability of the RNA-seq results. The potential waterlogging stress-related transcripts identified in this study are representatives of candidate genes and molecular resources for further understanding the molecular mechanisms underlying the waterlogging response in cassava

    Evaluation of Stability and Biocompatibility of Chitosan/Sodium Tripolyphosphate and Chitosan/Flaxseed Gum Composite Nanoparticles Loaded with Bighead Carp Peptides

    Get PDF
    Chitosan nanoparticle is becoming an excellent carrier for the delivery of bioactive components due to the advantages of simple preparation, low cost and high biocompatibility. Previous studies have shown that chitosan/sodium tripolyphosphate (CS/TPP) and chitosan/flaxseed gum (CS/FG) nanoparticles loaded with bighead carp peptides (BCP) have the advantages of small particle size, high encapsulation rate and significant slow-release effect. This study explored the effects of ionic strength, pH, simulated digestion and storage time on the preparation of chitosan/sodium tripolyphosphate (CS/TPP-BCP) and chitosan/flaxseed gum (CS/FG-BCP) nanoparticles, and evaluated the extracellular lactate dehydrogenase content and antioxidant capacity in vivo of Caco-2 cells treated with the chitosan nanoparticles and their cellular uptake. The results showed that the two kinds of chitosan nanoparticles were stable under acidic conditions and sensitive to a solution with opposite charges. The stability of the nanoparticles loaded with bighead peptides was higher than that of free peptides and both nanoparticles showed higher biocompatibility and cell uptake
    • 

    corecore