78 research outputs found

    Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    Get PDF
    Water vapour is one of the most important greenhouse gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a greenhouse gas but also because of its role in amplifying other feedbacks such as clouds and albedo. In recent decades, monitoring of water vapour on a regular and continuous basis has become possible as a result of the steady increase in the number of deployed global positioning satellite (GPS) ground-based receivers. However, the Horn of Africa remained a data-void region in this regard until recently, when some GPS ground-receiver stations were deployed to monitor tectonic movements in the Great Rift Valley. This study seizes this opportunity and the installation of a Fourier transform infrared spectrometer (FTIR) at Addis Ababa to assess the quality and comparability of precipitable water vapour (PWV) from GPS, FTIR, radiosonde and interim ECMWF Re-Analysis (ERA-Interim) over Ethiopia. The PWV from the three instruments and the reanalysis show good correlation, with correlation coefficients in the range from 0.83 to 0.92. On average, GPS shows the highest PWV followed by FTIR and radiosonde observations. ERA-Interim is higher than all measurements with a bias of 4.6 mm compared to GPS. The intercomparison between GPS and ERA-Interim was extended to seven other GPS stations in the country. Only four out of eight GPS stations included simultaneous surface pressure observations. Uncertainty in the model surface pressure of 1 hPa can cause up to 0.35 mm error in GPS PWV. The gain obtained from using observed surface pressure in terms of reducing bias and strengthening correlation is significant but shows some variations among the GPS sites. The comparison between GPS and ERA-Interim PWV over the seven other GPS stations shows differences in the magnitude and sign of bias of ERA-Interim with respect to GPS PWV from station to station. This feature is also prevalent in diurnal and seasonal variabilities. The spatial variation in the relationship between the two data sets is partly linked to variation in the skill of the European Centre for Medium-Range Weather Forecasts (ECMWF) model over different regions and seasons. This weakness in the model is related to poor observational constraints from this part of the globe and sensitivity of its convection scheme to orography and land surface features. This is consistent with observed wet bias over some highland stations and dry bias over few lowland stations. The skill of ECMWF in reproducing realistic PWV varies with time of the day and season, showing large positive bias during warm and wet summer at most of the GPS site

    Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia

    Get PDF
    Addis Ababa is expected to experience water supply stress as a result of complex interaction of urbanization and climate change. The aim of this study is to investigate water demand and supply prospects for the City of Addis Ababa by applying the Water Evaluation and Planning (WEAP) hydrological model and using scenarios of population growth trends and climate change. The study includes analysis of water consumption, hydrological information and climate data which is statistically downscaled using approach used to generate climate data available at the Worldclim data center. Bias corrected climate model data of NIMR-HadGEM2-AO under a midrange RCP 4.5 scenario and RCP8.5, high emissions scenario was used for the study. The result shows that the projected population of Addis Ababa city using high population growth rate (3.3%) will be about 7 million by the year 2039. The climate change projections result under RCP 4.5 and RCP 8.5 scenarios on surface water supply shows that the level of reservoirs volume both at Legedadi/Dire and Gefersa reservoirs will be reduced in the projected years between the years 2023 and 2039. The result of the RCP 8.5 scenario with low population growth shows that the unmet water demand will be 257.28 million m3 in 2037. The result of the RCP 4.5 scenario with low population growth shows that the unmet water demand will be 314.91 million m3 in 2037. This indicates that the unmet water demand with the dry climate of RCP 4.5 climate change scenario is higher than RCP 8.5 scenario. Under the RCP 4.5 scenario with high population growth (3.3%) the unmet water demand is 87.42 million m3 in 2030, 158.38 million m3 in 2035 and 380.72 million m3 in 2037. This indicates that the unmet water demand in both high population growth and the dry climate of RCP 4.5 climate change scenariowill lead to severe shortage of water in the city. The most effective management options are water tariff increasing, domestic water use technology efficiency improvement and water harvesting which give satisfactory result in mitigating unmet demand of climate change and population growth in the city

    Methane and nitrous oxide from ground-based FTIR at Addis Ababa: Observations, error analysis, and comparison with satellite data

    Get PDF
    A ground-based, high-spectral-resolution Fourier transform infrared (FTIR) spectrometer has been operational in Addis Ababa, Ethiopia (9.01∘ N latitude, 38.76∘ E longitude; 2443 m altitude above sea level), since May 2009 to obtain information on column abundances and profiles of various constituents in the atmosphere. Vertical profile and column abundances of methane and nitrous oxide are derived from solar absorption measurements taken by FTIR for a period that covers May 2009 to March 2013 using the retrieval code PROFFIT (V9.5). A detailed error analysis of CH4_{4} and N2_{2}O retrieval are performed. Averaging kernels of the target gases shows that the major contribution to the retrieved information comes from the measurement. Thus, average degrees of freedom for signals are found to be 2.1 and 3.4, from the retrieval of CH4_{4} and N2_{2}O for the total observed FTIR spectra. Methane and nitrous oxide volume mixing ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with data from the reduced spectral resolution Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía (IMK/IAA) MIPAS (Version V5R_CH4_224 and V5R_N2O_224), the Microwave Limb Sounder (MLS) (MLS v3.3 of N2_{2}O and CH4_{4} derived from MLS v3.3 products of CO, N2_{2}O, and H2_{2}O), and the Atmospheric Infrared Sounder (AIRS) sensors on board satellites. The averaged mean relative difference between FTIR methane and the three correlative instruments MIPAS, MLS, and AIRS are 4.2 %, 5.8 %, and 5.3 % in the altitude ranges of 20 to 27 km, respectively. However, the biases below 20 km are negative, which indicates the profile of CH4 from FTIR is less than the profiles derived from correlative instruments by −4.9 %, −1.8 %, and −2.8 %. The averaged positive bias between FTIR nitrous oxide and correlative instrument, MIPAS, in the altitude range of 20 to 27 km is 7.8 %, and a negative bias of −4 % at altitudes below 20 km. An averaged positive bias of 9.3 % in the altitude range of 17 to 27 km is obtained for FTIR N2O with MLS. In all the comparisons of CH4_{4} from FTIR with data from MIPAS, MLS, and AIRS, sensors on board satellites indicate a negative bias below 20 km and a positive bias above 20 km. The mean error between partial-column amounts of methane from MIPAS and the ground-based FTIR is −5.5 %, with a standard deviation of 5 % that shows very good agreement as exhibited by relative differences between vertical profiles. Thus, the retrieved CH4_{4} and N2_{2}O VMR and column amounts from Addis Ababa, tropical site, is found to exhibit very good agreement with all coincident satellite observations. Therefore, the bias obtained from the comparison is comparable to the precision of FTIR measurement, which allows the use of data in further scientific studies as it represents a unique environment of tropical Africa, a region poorly investigated in the past

    Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions

    Get PDF
    A comprehensive calibration procedure for mobile, low-resolution, solar-absorption FTIR spectrometers, used for greenhouse gases observations, is developed. These instruments commend themselves for campaign use and deployment at remote sites. The instrumental line shape (ILS) of each spectrometer has been thoroughly characterized by analyzing the shape of H2O signatures in open path spectra. A setup for the external source is suggested and the invariance of derived ILS parameters with regard to chosen path length is demonstrated. The instrumental line shape characteristics of all spectrometers were found to be close to nominal. Side-by-side solar observations before and after a campaign, which involved shipping of all spectrometers to a selected target site and back, are applied for verifying the temporal invariability of instrumental characteristics and for deriving intercalibration factors for XCO2 and XCH4, which take into account residual differences of instrumental characteristics. An excellent level of agreement and stability was found between the different spectrometers: the uncorrected biases in XCO2 and XCH4 are smaller than 0.01 and 0.15 %, respectively, and the drifts are smaller than 0.005 and 0.035 %. As an additional sensitive demonstration of the instrumental performance we show the excellent agreement of ground pressure values obtained from the total column measurements of O2 and barometric records. We find a calibration factor of 0.9700 for the spectroscopic measurements in comparison to the barometric records and a very small scatter between the individual spectrometers (0.02 %). As a final calibration step, using a co-located TCCON (Total Carbon Column Observation Network) spectrometer as a reference, a common scaling factor has been derived for the XCO2 and XCH4 products, which ensures that the records are traceable to the WMO in situ scale. © Author(s) 2015

    Use of portable FTIR spectrometers for detecting greenhouse gas emissions of the megacity Berlin - Part 1: Instrumental line shape characterisation and calibration of a quintuple of spectrometers

    Get PDF
    Several low resolution spectrometers were used to investigate the CO2 and CH4 emissions of the megacity Berlin. Before and after the campaign the instruments were tested side-by-side. An excellent level of agreement and stability was found between the different spectrometers: the drifts in XCO2 and XCH4 are within 0.005 and 0.035%, respectively. The instrumental line shape characteristics of all spectrometers were found to be close to nominal. Cross-calibration factors for XCH4 and XCO2 were established for each spectrometer. An empirical airmass correction factor has been applied. As a last calibration step, using a co-located TCCON spectrometer as a reference, a common factor has been derived for the low-resolution campaign spectrometers, which ensures that the records are compatible to the WMO in-situ scale. Finally as a first result of the Berlin campaign we show the excellent agreement of ground pressure values obtained from total column measurements and in situ records

    Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin

    Get PDF
    Five portable Bruker EM27/SUN FTIR (Fourier transform infrared) spectrometers have been used for the accurate and precise observation of column-averaged abundances of CO2 and CH4 around the major city Berlin. In the work by Frey et al. (2015), a calibration procedure is developed and applied to the set of spectrometers used for the Berlin campaign. Here, we describe the observational setup of the campaign and aspects of the data analysis, and we present the recorded time series of XCH4 and XCO2. We demonstrate that the CO2 emissions of Berlin can be clearly identified in the observations. A simple dispersion model is applied which indicates a total strength of the Berlin source of about 0.8 t CO2 s-1. In the Supplement of this work, we provide the measured data set and auxiliary data. We hope that the model community will exploit this unique data set for state-of-the art inversion studies of CO2 and CH4 sources in the Berlin area. © Author(s) 2015

    Use of portable FTIR spectrometers for detecting greenhouse gas emissions of the megacity Berlin - Part 2: Observed time series of XCO₂ and XCH₄

    Get PDF
    Five portable Bruker EM27/SUN FTIR spectrometers have been used for the accurate and precise observation of column averaged abundances of CO2 and CH4 around the megacity Berlin. In the first part of this work (Frey et al., 2015) we have presented the various measures that were undertaken to ensure that the observations are consistent between sites, accurate and precise. Here, we present the recorded time series of XCH4 and XCO2 and demonstrate that the CO2 emissions of Berlin can be clearly identified in the observations. A simple dispersion model is applied which indicates a total strength of the Berlin source of about 0.8 t CO2 s-1. In the Supplement of this work, we provide the measured dataset and auxiliary data. We hope that the model community will exploit this unique dataset for state-of-the art inversion studies of CO2 and CH4 sources in the Berlin area

    HNO3, N2O5 and CIONO2 Enhancements after the October-November 2003 Solar Proton Events

    Get PDF
    The large solar storm in October-November 2003 produced enormous amounts of high-energy protons which reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Environmental Satellite (ENVISAT) was observing the atmosphere in the 6-68 km altitude range. MIPAS observed significant enhancements of the NO(y) components HNO3, N2O5 and CIONO2 in the Northern polar stratosphere after the intense solar proton events. Two distinct HNO3 enhancements were observed. An instantaneous increase of 1-2 ppbv was observed immediately after the SPEs and is attributed to gas-phase chemistry: NO2 + OH + M yields HNO3 + M, accelerated by SPE-produced excess OH. A very large second increase of 1- 5 ppbv started around 10 November and lasted until the end of December. It is attributed to NO(x) (NO+NO2) produced in the mesosphere during the major SPEs in late October/early November and then transported downwards during November and December, partially converted to N2O5 in the upper stratosphere, which finally formed HNO3 via ion cluster reactions. N2O5 was observed to increase by 0.1-0.4 ppbv 1-3 days after the major SPEs and reached down to 30 km altitude. A second, more pronounced N2O5 enhancement of up to 1.2 ppbv at 40 km appeared about 12-13 days after the major SPEs. With a delay of 1-2 days after the major SPEs CIONO2 increased by up to 0.4 ppbv (40%) at 32 km altitude. NO(y) enhancements in the Southern hemisphere were generally less pronounced

    Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions

    Get PDF
    A comprehensive calibration procedure for mobile, low-resolution, solar-absorption FTIR spectrometers, used for greenhouse gases observations, is developed. These instruments commend themselves for campaign use and deployment at remote sites. The instrumental line shape (ILS) of each spectrometer has been thoroughly characterized by analyzing the shape of H2O signatures in open path spectra. A setup for the external source is suggested and the invariance of derived ILS parameters with regard to chosen path length is demonstrated. The instrumental line shape characteristics of all spectrometers were found to be close to nominal. Side-by-side solar observations before and after a campaign, which involved shipping of all spectrometers to a selected target site and back, are applied for verifying the temporal invariability of instrumental characteristics and for deriving intercalibration factors for XCO2 and XCH4, which take into account residual differences of instrumental characteristics. An excellent level of agreement and stability was found between the different spectrometers: the uncorrected biases in XCO2 and XCH4 are smaller than 0.01 and 0.15 %, respectively, and the drifts are smaller than 0.005 and 0.035 %. As an additional sensitive demonstration of the instrumental performance we show the excellent agreement of ground pressure values obtained from the total column measurements of O2 and barometric records. We find a calibration factor of 0.9700 for the spectroscopic measurements in comparison to the barometric records and a very small scatter between the individual spectrometers (0.02 %). As a final calibration step, using a co-located TCCON (Total Carbon Column Observation Network) spectrometer as a reference, a common scaling factor has been derived for the XCO2 and XCH4 products, which ensures that the records are traceable to the WMO in situ scale
    corecore