1,162 research outputs found

    Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Get PDF
    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves

    Equatorial Annual Oscillation with QBO-driven 5-year Modulation in NCEP Data

    Get PDF
    An analysis is presented of the zonal wind and temperature variations supplied by the National Center for Environmental Prediction (NCEP), which have been assimilated in the Reanalysis and the Climate Prediction Center (CCP) data sets. The derived zonal-mean variations are employed. Stimulated by modeling studies, the data are separated into the hemispherically symmetric and anti-symmetric components, and spectral analysis is applied to study the annual 12-month oscillation and Quasi-biennial Oscillation (QBO). For data samples that cover as much as 40 years, the results reveal a pronounced 5-year modulation of the symmetric AO in the lower stratosphere, which is confined to equatorial latitudes. This modulation is also inferred for the temperature variations but extends to high latitudes, qualitatively consistent with published model results. A comparison between different data samples indicates that the signature of the 5-year oscillation is larger when the QBO of 30 months is more pronounced. Thus there is circumstantial evidence that this periodicity of the QBO is involved in generating the oscillation. The spectral analysis shows that there is a weak anti-symmetric 5-year oscillation in the zonal winds, which could interact with the large antisymmetric A0 to produce the modulation of the symmetric AO as was shown in earlier modeling studies. According to these studies, the 30-month QBO tends to be synchronized by the equatorial Semi-annual Oscillation (SAO), and this would explain why the inferred 5-year modulation is observed to persist and is phase locked over several cycles

    The QBO as potential amplifier and conduit to lower altitudes of solar cycle influence

    No full text
    International audienceIn several papers, the solar cycle (SC) effect in the lower atmosphere has been linked observationally to the Quasi-biennial Oscillation (QBO) of the zonal circulation. Salby and Callaghan (2000) in particular analyzed the QBO wind measurements, covering more than 40 years, and discovered that they contain a large SC signature at 20 km. We present here the results from a study with our 3-D Numerical Spectral Model (NSM), which relies primarily on parameterized gravity waves (GW) to describe the QBO. In our model, the period of the SC is taken to be 10 years, and the relative amplitude of radiative forcing varies exponentially with height, i.e., 0.2% at the surface, 2% at 50 km, and 20% at 100 km and above. Applying spectral analysis to identify the SC signature, the model generates a relatively large modulation of the QBO, which reproduces the observations qualitatively. The numerical results demonstrate that the QBO modulation, closely tracking the phase of the SC, is robust and persists at least for 70 years. The question is what causes the SC effect, and our analysis shows that four interlocking processes are involved: (1) In the mesosphere at around 60 km, the solar UV variations generate in the zonal winds a SC modulation of the 12-month annual oscillation, which is hemispherically symmetric and confined to equatorial latitudes like the QBO. (2) Although the amplitude of this equatorial annual oscillation (EAO) is relatively small, its SC modulation is large and extends into the lower stratosphere under the influence of, and amplified by, wave forcing. (3) The amplitude modulations of both EAO and QBO are essentially in phase with the imposed SC heating for the entire time span of the model simulation. This indicates that, due to positive feedback in the wave mechanism, the EAO apparently provides the pathway and pacemaker for the SC modulation of the QBO. (4) Our analysis demonstrates that the SC modulations of the QBO and EAO are amplified by tapping the momentum from the upward propagating gravity waves. Influenced and amplified by wave processes, the QBO thus acts as conduit to transfer to lower altitudes the larger SC variations in the UV absorbed in the mesosphere. Our model produces in the temperature variations of the QBO and EAO measurable SC modulations at polar latitudes near the tropopause. The effects are apparently generated by the meridional circulation, and planetary waves presumably, which redistribute the energy from the equatorial region where the waves are very effective in amplifying the SC influence

    K-band Spectroscopy of Clusters in NGC 4038/4039

    Full text link
    Integral field spectroscopy in the K-band (1.9-2.4um) was performed on four IR-bright star clusters and the two nuclei in NGC 4038/4039 (``The Antennae''). Two of the clusters are located in the overlap region of the two galaxies, and together comprise ~25% of the total 15um and ~10% of the total 4.8 GHz emission from this pair of merging galaxies. The other two clusters, each of them spatially resolved into two components, are located in the northern galaxy, one in the western and one in the eastern loop of blue clusters. Comparing our analysis of Brgamma, CO band-heads, He I (2.058um), Halpha (from archival HST data), and V-K colors with stellar population synthesis models indicates that the clusters are extincted (A_V ~ 0.7 - 4.3 mags) and young, displaying a significant age spread (4-13 Myrs). The starbursts in the nuclei are much older (65 Myrs), with the nucleus of NGC 4038 displaying a region of recent star formation northward of its K-band peak. Using our derived age estimates and assuming the parameters of the IMF (Salpeter slope, upper mass cut-off of 100 M_sun, Miller-Scalo between 1 M_sun and 0.1 M_sun), we find that the clusters have masses between 0.5 and 5 * 10^6M_sun.Comment: 10 pages, 3 figures, ApJ accepte

    30 Doradus - a Template for "Real Starbursts"?

    Full text link
    30 Doradus is the closest massive star forming region and the best studied template of a starburst. In this conference paper we first summarize the properties of 30 Doradus and its stellar core, R136. We discuss the effects of insufficient spatial resolution and cluster density profiles on dynamical mass estimates of super star clusters, and show that their masses can be easily overestimated by a factor of ten or more. From a very simple model, with R136-like clusters as representative building blocks, we estimate typical luminosities of the order 10^11 L_o for starburst galaxies.Comment: To be published in "Starbursts: From 30 Doradus to Lyman Break Galaxies", eds. R. de Grijs & R.M. Gonzalez Delgad

    Data handling with SAM and art at the NOνA experiment

    Get PDF
    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we have adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this paper we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment

    The reaction γpπγp\gamma p \to \pi^\circ \gamma^\prime p and the magnetic dipole moment of the Δ+(1232)\Delta^+(1232) resonance

    Full text link
    The reaction γpπγp\gamma p \to \pi^\circ \gamma^\prime p has been measured with the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI for energies between s\sqrt{s} = 1221--1331 MeV. Cross sections differential in angle and energy have been determined for all particles in the final state in three bins of the excitation energy. This reaction channel provides access to the magnetic dipole moment of the Δ+(1232)\Delta^{+}(1232) resonance and, for the first time, a value of μΔ+=(2.71.3+1.0(stat.)±1.5(syst.)±3(theo.))μN\mu_{\Delta^+} = (2.7_{-1.3}^{+1.0}(stat.) \pm 1.5 (syst.) \pm 3(theo.)) \mu_N has been extracted

    In-medium modifications of the ππ\pi\pi interaction in photon-induced reactions

    Full text link
    Differential cross sections of the reactions (γ,ππ)(\gamma,\pi^\circ\pi^\circ) and (γ,ππ++ππ)(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-) have been measured for several nuclei (1^1H,12^{12}C, and nat^{\rm nat}Pb) at an incident-photon energy of EγE_{\gamma}=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the ππ\pi\pi invariant-mass distribution is found in the ππ\pi^\circ\pi^\circ channel. This dependence is not observed in the ππ+/\pi^\circ\pi^{+/-} channel and is consistent with an in-medium modification of the ππ\pi\pi interaction in the II=JJ=0 channel. The data are compared to π\pi-induced measurements and to calculations within a chiral-unitary approach
    corecore