120 research outputs found

    Distant-Time Location Prediction in Low-Sampling-Rate Trajectories

    Full text link
    Abstract—With the growth of location-based services and social services, low-sampling-rate trajectories from check-in data or photos with geo-tag information becomes ubiquitous. In general, most detailed moving information in low-sampling-rate trajectories are lost. Prior works have elaborated on distant-time location prediction in high-sampling-rate trajectories. However, existing prediction models are pattern-based and thus not ap-plicable due to the sparsity of data points in low-sampling-rate trajectories. For example, it becomes difficult to derive trajectory patterns, let alone utilizing trajectory patterns for distant-time location prediction. In this paper, given a query time, the current location and time, we aim to predict the location of an object at the query time. To address the sparsity in low-sampling-rate trajectories, we develop a Reachability-based prediction model on Time-constrained Mobility Graph (abbreviated as RTMG) to predict locations for distant-time queries. Specifically, we design an adaptive temporal exploration approach to extract effective supporting trajectories that are temporally close to the query time. These data points are then represented as a Time-constrained user mobility Graph (refers to as TG). In light of TG, we further derive the reachability probabilities among locations in TG. Thus, a location with maximum reachability from the current location among all possible locations in sup-porting trajectories is considered as the prediction result. To efficiently process queries, we proposed an index structure SOIT to organize location records for on-line query processing. We conduct extensive experiments on real low-sampling-rate datasets and demonstrate the effectiveness and efficiency of RTMG. I

    Effects of Defects on Photocatalytic Activity of Hydrogen-Treated Titanium Oxide Nanobelts

    Get PDF
    Previous studies have shown that hydrogen treatment leads to the formation of blue to black TiO_2, which exhibits photocatalytic activity different from that of white pristine TiO_2. However, the underlying mechanism remains poorly understood. Herein, density functional theory is combined with comprehensive analytical approaches such as X-ray absorption near edge structure spectroscopy and transient absorption spectroscopy to gain fundamental understanding of the correlation among the oxygen vacancy, electronic band structure, charge separation, charge carrier lifetime, reactive oxygen species (ROS) generation, and photocatalytic activity. The present work reveals that hydrogen treatment results in chemical reduction of TiO_2, inducing surface and subsurface oxygen vacancies, which create shallow and deep sub-band gap Ti(III) states below the conduction band. This leads to a blue color but limited enhancement of visible light photocatalytic activity up to 440 nm at the cost of reduced ultraviolet photocatalytic activity. The extended light absorption spectral range for reduced TiO_2 is ascribed to both the defect-to-conduction band transitions and the valence band-to-defect transitions. The photogenerated charge carriers from the defect states to the conduction band have lifetimes too short to drive photocatalysis. The Ti(III) deep and shallow trap states below the conduction band are also found to reduce the lifetime of photogenerated charge carriers under ultraviolet light irradiation. The ROS generated by the reduced TiO_2 are less than those generated by pristine TiO_2. Consequently, the reduced TiO_2 exhibits ultraviolet-responsive photocatalytic activity worse than that of pristine TiO_2. This report shows that increasing the light absorption spectral range of a semiconductor by doping or introduction of defects does not necessarily guarantee an increase in photocatalytic activity

    Effects of Defects on Photocatalytic Activity of Hydrogen-Treated Titanium Oxide Nanobelts

    Get PDF
    Previous studies have shown that hydrogen treatment leads to the formation of blue to black TiO_2, which exhibits photocatalytic activity different from that of white pristine TiO_2. However, the underlying mechanism remains poorly understood. Herein, density functional theory is combined with comprehensive analytical approaches such as X-ray absorption near edge structure spectroscopy and transient absorption spectroscopy to gain fundamental understanding of the correlation among the oxygen vacancy, electronic band structure, charge separation, charge carrier lifetime, reactive oxygen species (ROS) generation, and photocatalytic activity. The present work reveals that hydrogen treatment results in chemical reduction of TiO_2, inducing surface and subsurface oxygen vacancies, which create shallow and deep sub-band gap Ti(III) states below the conduction band. This leads to a blue color but limited enhancement of visible light photocatalytic activity up to 440 nm at the cost of reduced ultraviolet photocatalytic activity. The extended light absorption spectral range for reduced TiO_2 is ascribed to both the defect-to-conduction band transitions and the valence band-to-defect transitions. The photogenerated charge carriers from the defect states to the conduction band have lifetimes too short to drive photocatalysis. The Ti(III) deep and shallow trap states below the conduction band are also found to reduce the lifetime of photogenerated charge carriers under ultraviolet light irradiation. The ROS generated by the reduced TiO_2 are less than those generated by pristine TiO_2. Consequently, the reduced TiO_2 exhibits ultraviolet-responsive photocatalytic activity worse than that of pristine TiO_2. This report shows that increasing the light absorption spectral range of a semiconductor by doping or introduction of defects does not necessarily guarantee an increase in photocatalytic activity

    Exponential ATP amplification through simultaneous regeneration from AMP and pyrophosphate for luminescence detection of bacteria

    Get PDF
    a b s t r a c t Bacteria monitoring is essential for many industrial manufacturing processes, particularly those involving in food, biopharmaceuticals, and semiconductor production. Firefly luciferase ATP luminescence assay is a rapid and simple bacteria detection method. However, the detection limit of this assay for Escherichia coli is approximately 10 4 colony-forming units (CFU), which is insufficient for many applications. This study aims to improve the assay sensitivity by simultaneous conversion of PP i and AMP, two products of the luciferase reaction, back to ATP to form two chain-reaction loops. Because each consumed ATP continuously produces two new ATP molecules, this approach can achieve exponential amplification of ATP. Two consecutive enzyme reactions were employed to regenerate AMP into ATP: adenylate kinase converting AMP into ADP using UTP as the energy source, and acetate kinase catalyzing acetyl phosphate and ADP into ATP. The PP i -recycling loop was completed using ATP sulfurylase and adenosine 5 0 phosphosulfate. The modification maintains good quantification linearity in the ATP luminescence assay and greatly increases its bacteria detection sensitivity. This improved method can detect bacteria concentrations of fewer than 10 CFU. This exponential ATP amplification assay will benefit bacteria monitoring in public health and manufacturing processes that require high-quality water. Ă“ 2011 Elsevier Inc. All rights reserved. Bacteria monitoring is essential for many industrial manufacturing processes, and particularly those involving food, semiconductors, and biopharmaceuticals. The presence of bacteria reduces production yield and may cause serious health problems in humans. Researchers have developed several rapid assays for detecting bacteria in water. These methods include polymerase chain reactions, fluorescence in situ hybridization [1], b-D-glucuronidase activity measurement The ATP luminescence assay is a rapid, sensitive, and easy-toperform method based on the detection of ATP, a molecule ubiquitously present in all living cells. The enzyme luciferase catalyzes the oxidation of the substrate luciferin while transforming the energy derived from ATP into light, which can be quantified by a luminometer. This assay has been widely used in bacteria monitoring for food hygiene [4] and surface cleanliness The current detection limit of the ATP luminescence method for Escherichia coli is approximately 10 4 colony-forming units (CFU) 1 [12,13], which is not sensitive enough for many industrial and medical applications. Several approaches have been adopted to improve the assay sensitivity. The first strategy involves the identification of chemical extractants that can effectively disrupt bacterial cells while not interfering with the luminescence assay. Both dimethyl sulfoxide (DMSO) 0003-2697/$ -see front matter

    MultiMSOAR 2.0: An Accurate Tool to Identify Ortholog Groups among Multiple Genomes

    Get PDF
    The identification of orthologous genes shared by multiple genomes plays an important role in evolutionary studies and gene functional analyses. Based on a recently developed accurate tool, called MSOAR 2.0, for ortholog assignment between a pair of closely related genomes based on genome rearrangement, we present a new system MultiMSOAR 2.0, to identify ortholog groups among multiple genomes in this paper. In the system, we construct gene families for all the genomes using sequence similarity search and clustering, run MSOAR 2.0 for all pairs of genomes to obtain the pairwise orthology relationship, and partition each gene family into a set of disjoint sets of orthologous genes (called super ortholog groups or SOGs) such that each SOG contains at most one gene from each genome. For each such SOG, we label the leaves of the species tree using 1 or 0 to indicate if the SOG contains a gene from the corresponding species or not. The resulting tree is called a tree of ortholog groups (or TOGs). We then label the internal nodes of each TOG based on the parsimony principle and some biological constraints. Ortholog groups are finally identified from each fully labeled TOG. In comparison with a popular tool MultiParanoid on simulated data, MultiMSOAR 2.0 shows significantly higher prediction accuracy. It also outperforms MultiParanoid, the Roundup multi-ortholog repository and the Ensembl ortholog database in real data experiments using gene symbols as a validation tool. In addition to ortholog group identification, MultiMSOAR 2.0 also provides information about gene births, duplications and losses in evolution, which may be of independent biological interest. Our experiments on simulated data demonstrate that MultiMSOAR 2.0 is able to infer these evolutionary events much more accurately than a well-known software tool Notung. The software MultiMSOAR 2.0 is available to the public for free

    Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Get PDF
    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities
    • …
    corecore