22,004 research outputs found

    An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL

    Get PDF
    An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy

    Enhanced spin-orbit torques in MnAl/Ta films with improving chemical ordering

    Full text link
    We report the enhancement of spin-orbit torques in MnAl/Ta films with improving chemical ordering through annealing. The switching current density is increased due to enhanced saturation magnetization MS and effective anisotropy field HK after annealing. Both damplinglike effective field HD and fieldlike effective field HF have been increased in the temperature range of 50 to 300 K. HD varies inversely with MS in both of the films, while the HF becomes liner dependent on 1/MS in the annealed film. We infer that the improved chemical ordering has enhanced the interfacial spin transparency and the transmitting of the spin current in MnAl layer

    The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers

    Full text link
    Using the self-consistent field approach, the effect of asymmetry of the coil block on the microphase separation is focused in ABC coil-rod-coil triblock copolymers. For different fractions of the rod block fBf_{\text B}, some stable structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell hexagonal lattice, and the phase diagrams are constructed. The calculated results show that the effect of the coil block fraction fAf_{\text A} is dependent on fBf_{\text B}. When fB=0.2f_{\text B}=0.2, the effect of asymmetry of the coil block is similar to that of the ABC flexible triblock copolymers; When fB=0.4f_{\text B}=0.4, the self-assembly of ABC coil-rod-coil triblock copolymers behaves like rod-coil diblock copolymers under some condition. When fBf_{\text B} continues to increase, the effect of asymmetry of the coil block reduces. For fB=0.4f_{\text B}=0.4, under the symmetrical and rather asymmetrical conditions, an increase in the interaction parameter between different components leads to different transitions between cylinders and lamellae. The results indicate some remarkable effect of the chain architecture on self-assembly, and can provide the guidance for the design and synthesis of copolymer materials.Comment: 9 pages, 3 figure

    Mean-field embedding of the dual fermion approach for correlated electron systems

    Get PDF
    To reduce the rapidly growing computational cost of the dual fermion lattice calculation with increasing system size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual fermion embedding. Our numerical tests show that the real fermion and dual fermion embedding approaches converge to essentially the same result. The application on the Anderson disorder and Hubbard models shows that these embedding algorithms converge more quickly with system size as compared to the conventional dual fermion method, for the calculation of both single-particle and two-particle quantities.Comment: 10 pages, 10 figure

    Dual Fermion Method for Disordered Electronic Systems

    Get PDF
    While the coherent potential approximation (CPA) is the prevalent method for the study of disordered electronic systems, it fails to capture non-local correlations and Anderson localization. To incorporate such effects, we extend the dual fermion approach to disordered non-interacting systems using the replica method. Results for single- and two- particle quantities show good agreement with cluster extensions of the CPA; moreover, weak localization is captured. As a natural extension of the CPA, our method presents an alternative to the existing cluster theories. It can be used in various applications, including the study of disordered interacting systems, or for the description of non-local effects in electronic structure calculations.Comment: 5 pages, 4 figure

    Micromachined membrane particle filters

    Get PDF
    We report here several particle membrane filters (8 x 8 mm^2) with circular, hexagonal and rectangular through holes. By varying hole dimensions from 6 to 12 pm, opening factors from 4 to 45 % are achieved. In order to improve the filter robustness, a composite silicon nitride/Parylene membrane technology is developed. More importantly, fluid dynamic performance of the filters is also studied by both experiments and numerical simulations. It is found that the gaseous flow through the filters depends strongly on opening factors, and the measured pressure drops are much lower than that from numerical simulation using the Navier-Stokes equation. Interestingly, surface velocity slip can only account for a minor part of the discrepancy. This suggests that a very interesting topic for micro fluid mechanics research is identified
    corecore