27,794 research outputs found
Modulation efficiency of LiNbO<sub>3</sub> waveguide electro-optic intensity modulator operating at high microwave frequency
The modulation efficiency, at high-frequency microwave modulation, of a LiNbO3 waveguide electro-optic modulator is shown to be degraded severely, especially when it is used as a frequency translator in a Brillouin-distributed fiber-sensing system. We derive an analytical expression for this attenuation regarding the phase-velocity mismatch and the impedance mismatch during the modulation process. Theoretical results are confirmed by experimental results based on a 15 Gb/s LiNbO3 optical intensity modulator
The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers
Using the self-consistent field approach, the effect of asymmetry of the coil
block on the microphase separation is focused in ABC coil-rod-coil triblock
copolymers. For different fractions of the rod block , some stable
structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell
hexagonal lattice, and the phase diagrams are constructed. The calculated
results show that the effect of the coil block fraction is
dependent on . When , the effect of asymmetry of
the coil block is similar to that of the ABC flexible triblock copolymers; When
, the self-assembly of ABC coil-rod-coil triblock copolymers
behaves like rod-coil diblock copolymers under some condition. When continues to increase, the effect of asymmetry of the coil block reduces.
For , under the symmetrical and rather asymmetrical
conditions, an increase in the interaction parameter between different
components leads to different transitions between cylinders and lamellae. The
results indicate some remarkable effect of the chain architecture on
self-assembly, and can provide the guidance for the design and synthesis of
copolymer materials.Comment: 9 pages, 3 figure
New transformation of Wigner operator in phase space quantum mechanics for the two-mode entangled case
As a natural extension of Fan's paper (arXiv: 0903.1769vl [quant-ph]) by
employing the formula of operators' Weyl ordering expansion and the bipartite
entangled state representation we find new two-fold complex integration
transformation about the Wigner operator (in its entangled form) in phase space
quantum mechanics and its inverse transformation. In this way, some operator
ordering problems can be solved and the contents of phase space quantum
mechanics can be enriched.Comment: 8 pages, 0 figure
On the Nature of X(4260)
We study the property of resonance by re-analyzing all experimental
data available, especially the cross section data. The final state
interactions of the , couple channel system are also taken
into account. A sizable coupling between the and is
found. The inclusion of the data indicates a small value of
eV.Comment: Refined analysis with new experimental data included. 13 page
The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation
We characterize the first 40 Myr of evolution of circumstellar disks through
a unified study of the infrared properties of members of young clusters and
associations with ages from 2 Myr up to ~ 40 Myr: NGC 1333, NGC 1960, NGC 2232,
NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion
OB1a and OB1b, Taurus, the \b{eta} Pictoris Moving Group, \r{ho} Ophiuchi, and
the associations of Argus, Carina, Columba, Scorpius-Centaurus, and
Tucana-Horologium. Our work features: 1.) a filtering technique to flag noisy
backgrounds, 2.) a method based on the probability distribution of deflections,
P(D), to obtain statistically valid photometry for faint sources, and 3.) use
of the evolutionary trend of transitional disks to constrain the overall
behavior of bright disks. We find that the fraction of disks three or more
times brighter than the stellar photospheres at 24 {\mu}m decays relatively
slowly initially and then much more rapidly by ~ 10 Myr. However, there is a
continuing component until ~ 35 Myr, probably due primarily to massive clouds
of debris generated in giant impacts during the oligarchic/chaotic growth
phases of terrestrial planets. If the contribution from primordial disks is
excluded, the evolution of the incidence of these oligarchic/chaotic debris
disks can be described empirically by a log-normal function with the peak at 12
- 20 Myr, including ~ 13 % of the original population, and with a post-peak
mean duration of 10 - 20 Myr.Comment: accepted for publication, the Astrophysical Journal (2017
Weyl superconductors
We study the physics of the superconducting variant of Weyl semimetals, which
may be realized in multilayer structures comprising topological insulators and
superconductors. We show how superconductivity can split each Weyl node into
two. The resulting Bogoliubov Weyl nodes can be pairwise independently
controlled, allowing to access a set of phases characterized by different
numbers of bulk Bogoliubov Weyl nodes and chiral Majorana surface modes. We
analyze the physics of vortices in such systems, which trap zero energy
Majorana modes only under certain conditions. We finally comment on possible
experimental probes, thereby also exploiting the similarities between Weyl
superconductors and 2-dimensional p + ip superconductors.Comment: 13 pages, 5 figure
Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations and -decay half-lives
The self-consistent quasiparticle random-phase approximation (QRPA) approach
is formulated in the canonical single-nucleon basis of the relativistic
Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the
isobaric analog states (IAS) and Gamov-Teller resonances (GTR) by taking Sn
isotopes as examples. It is found that self-consistent treatment of the
particle-particle residual interaction is essential to concentrate the IAS in a
single peak for open-shell nuclei and the Coulomb exchange term is very
important to predict the IAS energies. For the GTR, the isovector pairing can
increase the calculated GTR energy, while the isoscalar pairing has an
important influence on the low-lying tail of the GT transition. Furthermore,
the QRPA approach is employed to predict nuclear -decay half-lives. With
an isospin-dependent pairing interaction in the isoscalar channel, the
RHFB+QRPA approach almost completely reproduces the experimental -decay
half-lives for nuclei up to the Sn isotopes with half-lives smaller than one
second. Large discrepancies are found for the Ni, Zn, and Ge isotopes with
neutron number smaller than , as well as the Sn isotopes with neutron
number smaller than . The potential reasons for these discrepancies are
discussed in detail.Comment: 34 pages, 14 figure
Mean-field embedding of the dual fermion approach for correlated electron systems
To reduce the rapidly growing computational cost of the dual fermion lattice
calculation with increasing system size, we introduce two embedding schemes.
One is the real fermion embedding, and the other is the dual fermion embedding.
Our numerical tests show that the real fermion and dual fermion embedding
approaches converge to essentially the same result. The application on the
Anderson disorder and Hubbard models shows that these embedding algorithms
converge more quickly with system size as compared to the conventional dual
fermion method, for the calculation of both single-particle and two-particle
quantities.Comment: 10 pages, 10 figure
Dual Fermion Method for Disordered Electronic Systems
While the coherent potential approximation (CPA) is the prevalent method for
the study of disordered electronic systems, it fails to capture non-local
correlations and Anderson localization. To incorporate such effects, we extend
the dual fermion approach to disordered non-interacting systems using the
replica method. Results for single- and two- particle quantities show good
agreement with cluster extensions of the CPA; moreover, weak localization is
captured. As a natural extension of the CPA, our method presents an alternative
to the existing cluster theories. It can be used in various applications,
including the study of disordered interacting systems, or for the description
of non-local effects in electronic structure calculations.Comment: 5 pages, 4 figure
- …