22,361 research outputs found
The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers
Using the self-consistent field approach, the effect of asymmetry of the coil
block on the microphase separation is focused in ABC coil-rod-coil triblock
copolymers. For different fractions of the rod block , some stable
structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell
hexagonal lattice, and the phase diagrams are constructed. The calculated
results show that the effect of the coil block fraction is
dependent on . When , the effect of asymmetry of
the coil block is similar to that of the ABC flexible triblock copolymers; When
, the self-assembly of ABC coil-rod-coil triblock copolymers
behaves like rod-coil diblock copolymers under some condition. When continues to increase, the effect of asymmetry of the coil block reduces.
For , under the symmetrical and rather asymmetrical
conditions, an increase in the interaction parameter between different
components leads to different transitions between cylinders and lamellae. The
results indicate some remarkable effect of the chain architecture on
self-assembly, and can provide the guidance for the design and synthesis of
copolymer materials.Comment: 9 pages, 3 figure
Matter loops corrected modified gravity in Palatini formulation
Recently, corrections to the standard Einstein-Hilbert action are proposed to
explain the current cosmic acceleration in stead of introducing dark energy. In
the Palatini formulation of those modified gravity models, there is an
important observation due to Arkani-Hamed: matter loops will give rise to a
correction to the modified gravity action proportional to the Ricci scalar of
the metric. In the presence of such term, we show that the current forms of
modified gravity models in Palatini formulation, specifically, the 1/R gravity
and gravity, will have phantoms. Then we study the possible
instabilities due to the presence of phantom fields. We show that the strong
instability in the metric formulation of 1/R gravity indicated by Dolgov and
Kawasaki will not appear and the decay timescales for the phantom fields may be
long enough for the theories to make sense as effective field theory . On the
other hand, if we change the sign of the modification terms to eliminate the
phantoms, some other inconsistencies will arise for the various versions of the
modified gravity models. Finally, we comment on the universal property of the
Palatini formulation of the matter loops corrected modified gravity models and
its implications.Comment: 11 pages, 1 figures, References adde
Recommended from our members
Thin Solid Electrolyte Layers Enabled by Nanoscopic Polymer Binding
To achieve high-energy all-solid-state batteries (ASSBs), solid-state electrolytes (SE) must be thin, mechanically robust, and possess the ability to form low resistance interfaces with electrode materials. Embedding an inorganic SE into an organic polymer combines the merits of high conductivity and flexibility. However, the performance of such an SE-in-polymer matrix (SEPM) is highly dependent on the microstructure and interactions between the organic and inorganic components. We report on the synthesis of a free-standing, ultrathin (60 μm) SEPM from a solution of lithium polysulfide, phosphorus sulfide, and ethylene sulfide (ES), where the polysulfide triggers the in situ polymerization of ES and the formation of Li3PS4. Reactant ratios were optimized to achieve a room-temperature conductivity of 2 × 10-5 S cm-1. Cryogenic electron microscopy confirmed a uniform nanoscopic distribution of β-Li3PS4 and PES (polyethylene sulfide). This work presents a facile route to the scalable fabrication of ASSBs with promising cycling performance and low electrolyte loading
Low-lying states in Mg: a beyond relativistic mean-field investigation
The recently developed model of three-dimensional angular momentum projection
plus generator coordinate method on top of triaxial relativistic mean-field
states has been applied to study the low-lying states of Mg. The effects
of triaxiality on the low-energy spectra and E0 and E2 transitions are
examined.Comment: 6 pages, 3 figures, 1 table, talk presented at the 17th nuclear
physics conference "Marie and Pierre Curie" Kazimierz Dolny, 22-26th
September 2010, Polan
Mean-field embedding of the dual fermion approach for correlated electron systems
To reduce the rapidly growing computational cost of the dual fermion lattice
calculation with increasing system size, we introduce two embedding schemes.
One is the real fermion embedding, and the other is the dual fermion embedding.
Our numerical tests show that the real fermion and dual fermion embedding
approaches converge to essentially the same result. The application on the
Anderson disorder and Hubbard models shows that these embedding algorithms
converge more quickly with system size as compared to the conventional dual
fermion method, for the calculation of both single-particle and two-particle
quantities.Comment: 10 pages, 10 figure
Modified equation of state, scalar field, and bulk viscosity in Friedmann universe
A generalized dynamical equation for the scale factor of the universe is
proposed to describe the cosmological evolution, of which the CDM
model is a special case. It also provides a general example to show the
equivalence of the modified equation of state (EOS) and a scalar field model.
In the mathematical aspect, the EOS, the scalar field potential , and
the scale factor all have possessed analytical solutions. Such features
are due to a simple form invariance of the equation inherited which determines
the Hubble parameter. From the physical point of view, this dynamical equation
can be regarded as the CDM model with bulk viscosity, an existence
content in the universe. We employ the SNe Ia data with the parameter
measured from the SDSS data and the shift parameter
measured from WMAP data to constrain the parameters in our model. The result is
that the contribution of the bulk viscosity, accumulated as an effective dark
energy responsible for the current cosmic accelerating expansion, is made
approximately ten percent to that of the cosmological constant.Comment: 4 figs, pl
Dual Fermion Method for Disordered Electronic Systems
While the coherent potential approximation (CPA) is the prevalent method for
the study of disordered electronic systems, it fails to capture non-local
correlations and Anderson localization. To incorporate such effects, we extend
the dual fermion approach to disordered non-interacting systems using the
replica method. Results for single- and two- particle quantities show good
agreement with cluster extensions of the CPA; moreover, weak localization is
captured. As a natural extension of the CPA, our method presents an alternative
to the existing cluster theories. It can be used in various applications,
including the study of disordered interacting systems, or for the description
of non-local effects in electronic structure calculations.Comment: 5 pages, 4 figure
- …