65 research outputs found

    Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics

    Get PDF
    The rapid development of two-dimensional (2D) transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties. In particular, palladium diselenide (PdSe2) with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research interest. Consequently, tremendous research progress has been achieved regarding the physics, chemistry, and electronics of PdSe2. Accordingly, in this review, we recapitulate and summarize the most recent research on PdSe2, including its structure, properties, synthesis, and applications. First, a mechanical exfoliation method to obtain PdSe2 nanosheets is introduced, and large-area synthesis strategies are explained with respect to chemical vapor deposition and metal selenization. Next, the electronic and optoelectronic properties of PdSe2 and related heterostructures, such as field-effect transistors, photodetectors, sensors, and thermoelectric devices, are discussed. Subsequently, the integration of systems into infrared image sensors on the basis of PdSe2 van der Waals heterostructures is explored. Finally, future opportunities are highlighted to serve as a general guide for physicists, chemists, materials scientists, and engineers. Therefore, this comprehensive review may shed light on the research conducted by the 2D material community.Web of Science131art. no. 14

    Exploring the Visual Attention Mechanism of Long-Distance Driving in an Underground Construction Cavern: Eye-Tracking and Simulated Driving

    No full text
    Prolonged driving is necessary in underground construction caverns to transport materials, muck, and personnel, exposing drivers to high-risk and complex environments. Despite previous studies on attention and gaze prediction at tunnel exit-inlet areas, a significant gap remains due to the neglect of dual influences of long-distance driving and complex cues. To address this gap, this study establishes an experimental scenario in a construction environment, utilizing eye-tracking and simulated driving to collect drivers’ eye movement data. An analysis method is proposed to explore the visual change trend by examining the evolution of attention and calculating the possibility of visual cues being perceived at different driving stages to identify the attentional selection mechanism. The findings reveal that as driving time increases, fixation time decreases, saccade amplitude increases, and some fixations transform into unconscious saccades. Moreover, a phenomenon of “visual adaptation” occurs over time, reducing visual sensitivity to environmental information. At the start of driving, colorful stimuli and safety-related information compete for visual resources, while safety-related signs, particularly warning signs, always attract drivers’ attention. However, signs around intense light are often ignored. This study provides a scientific basis for transport safety in the construction environment of underground caverns

    Cascading failures of interdependent modular scale-free networks with different coupling preferences

    No full text
    As one of the most important mesoscopic properties of networks, the community structure plays an important role in cascading failures on isolated networks. However, the study for understanding the influences of the community structure on the cascading failures on interdependent scale-free networks remains missing. In this paper, we investigate cascading failures on interdependent modular scale-free networks under inner attacks and hub attacks from the global and local perspective. We mainly analyse the inter-community connections and coupling preferences, i.e. random coupling in communities (RCIC), assortative coupling in communities (ACIC) and assortative coupling with communities (ACWC). We find that increasing inter-community connections can enhance the robustness of interdependent modular scale-free networks for both inner attacks and hub attacks. Furthermore, we also find that the ACIC is more beneficial to resisting cascading failures compared with RCIC or ACWC. For ACIC, the cascading failures propagate mainly in a local community where the initial failure occurs. It is meaningful to control the cascading failures on interdependent modular scale-free networks by constructing ACIC

    Prediction of postoperative hypokalemia in patients with oral cancer undergoing en bloc cancer resection: a retrospective cohort study

    No full text
    Abstract Background The factors associated with postoperative hypokalemia in patients with oral cancer remain unclear. We determined the preoperative factors associated with postoperative hypokalemia in patients with oral cancer following en bloc cancer resection and established a nomogram for postoperative hypokalemia prediction. Methods Data from 381 patients with oral cancer who underwent en bloc cancer resection were retrospectively analyzed. Univariate and multivariate analyses were performed to identify the risk factors for postoperative hypokalemia. We used receiver operating characteristic (ROC) curves to quantify the factors’ effectiveness. A nomogram was created to show each predictor’s relative weight and the likelihood of postoperative hypokalemia development. The multinomial regression model’s effectiveness was also evaluated. Results Preoperative factors, including sex, preoperative serum potassium level, and preoperative platelet-to-lymphocyte ratio (PLR), were significantly associated with postoperative hypokalemia. Based on the ROC curve, the preoperative serum potassium and PLR cut-off levels were 3.98 mmol/L and 117, respectively. Further multivariate analysis indicated that female sex, preoperative serum potassium level < 3.98 mmol/L, and preoperative PLR ≥ 117 were independently associated with postoperative hypokalemia. We constructed a predictive nomogram with all these factors for the risk of postoperative hypokalemia with good discrimination and internal validation. Conclusions The predictive nomogram for postoperative hypokalemia risk constructed with these factors had good discrimination and internal validation. The developed nomogram will add value to these independent risk factors that can be identified at admission in order to predict postoperative hypokalemia

    Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB2, Al3Ti, and Al3Zr

    No full text
    Al-Ti-B intermediate alloys are widely used as grain refiners in aluminum alloys owing to the presence of Al3Ti and TiB2 phases. However, the existence of Zr in aluminum alloy melts often results in coarse grain size, leading to Al-Ti-B failure called Zr poisoning. There are three kinds of poisoning mechanisms related to TiB2, Al3Ti, and a combination of TiB2 and Al3Ti for Zr. First, Zr forms ZrB2 or Ti2Zr with TiB2 in Al-Ti-B to reduce the nucleation ability. Second, Zr existing in the aluminum melt with a high melting point Al3Zr then attracts Ti to reduce the dispersion of Ti as a growth inhibitor. Third, Zr reacts with Al3Ti on TiB2 surface to form Al3Zr, thereby increasing the degree of mismatch with Al and diminishing the refiner&rsquo;s ability as a nucleation substrate. To gain a better understanding of the mechanism of Zr poisoning, the first principle was used in this study to calculate the adhesion works (ZrB2//Al3Ti), (Ti2Zr//Al3Ti), (Al3Zr//Al3Ti), (Al3Ti//Al), (TiB2//Al3Zr), and (Al3Zr//Al), as well as the surface energy of Al3Zr and adsorption energies of Al to Al3Ti or Al3Zr. The results demonstrated that Zr poisoning originated from the second guess. Zr element exiting in aluminum melt led to the formation of an Al3Zr (001) surface. The interfacial adhesion work of Al3Zr (001)//Al3Ti (001) was not weaker than that of TiB2//Al3Ti. As a result, Al3Zr first combined with Al3Ti to significantly decline the adsorption of Al3Ti (001) on Al, losing its role as a nucleating agent and grain coarsening. Overall, to prevent failure of the grain refiner in Zr containing aluminum melt, the adhesion work interface between the generated phase of the grain refiner and Al3Zr must remain lower to avoid the combination of the generated phase of grain refiner with Al3Zr. In sum, these findings look promising for evaluating future effects of grain refinement in Zr containing aluminum melt
    corecore