92 research outputs found

    Silencing E3 Ubiqutin ligase ITCH as a potential therapy to enhance chemotherapy efficacy in p53 mutant neuroblastoma cells

    Get PDF
    P53 mutations are responsible for drug-resistance of tumour cells which impacts on the efficacy of treatment. Alternative tumour suppressor pathways need to be explored to treat p53- deficient tumours. The E3 ubiquitin ligase, ITCH, negatively regulates the tumour suppressor protein TP73, providing a therapeutic target to enhance the sensitivity of the tumour cells to the treatment. In the present study, two p53-mutant neuroblastoma cell lines were used as in vitro models. Using immunostaining, western blot and qPCR methods, we firstly identified that ITCH was expressed on p53-mutant neuroblastoma cell lines. Transfection of these cell lines with ITCH siRNA could effectively silence the ITCH expression, and result in the stabilization of TP73 protein, which mediated the apoptosis of the neuroblastoma cells upon irradiation treatment. Finally, in vivo delivery of the ITCH siRNA using nanoparticles to the neuroblastoma xenograft mouse model showed around 15–20% ITCH silencing 48 hours after transfection. Our data suggest that ITCH could be silenced both in vitro and in vivo using nanoparticles, and silencing of ITCH sensitizes the tumour cells to irradiation treatment. This strategy could be further explored to combine the chemotherapy/radiotherapy treatment to enhance the therapeutic effects on p53-deficient neuroblastoma

    Optimized lentiviral vector for restoration of full-length dystrophin via a cell-mediated approach in a mouse model of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the DMD gene. Restoration of full-length dystrophin protein in skeletal muscle would have therapeutic benefit, but lentivirally-mediated delivery of such a large gene in vivo has been hindered by lack of tissue-specificity, limited transduction and insufficient transgene expression. To address these problems, we developed a lentiviral vector, which contained a muscle-specific promoter and sequence optimized full-length dystrophin, to constrain the dystrophin expression to differentiated myotubes/myofibres and enhance the transgene expression. We further explored the efficiency of restoration of full-length dystrophin in vivo, by grafting DMD myoblasts that had been corrected by this optimized lentiviral vector intramuscularly into an immunodeficient DMD mouse model. We showed that these lentivirally-corrected DMD myoblasts effectively reconstituted full-length dystrophin expression in 93.58±2.17% of the myotubes in vitro. Moreover, dystrophin was restored in 64.4±2.87% of the donor-derived regenerated muscle fibres in vivo, which was able to recruit members of the dystrophin glycoprotein complex at the sarcolemma. This study represents a significant advance over existing cell-mediated gene therapy strategies for DMD that aim to restore full-length dystrophin expression in skeletal muscle

    IL-6 and PRG4 are novel predictive and mechanistic tissue biomarkers in conjunctival fibrosis

    Get PDF
    IMPORTANCE: Postsurgical fibrosis is a critical determinant of the long-term success of glaucoma surgery, but no reliable biomarkers are currently available to stratify the risk of scarring. OBJECTIVE: To compare the clinical phenotype of patients with conjunctival fibrosis after glaucoma surgery with candidate gene expression tissue biomarkers of fibrosis. DESIGN, SETTING AND PARTICIPANTS: In this cross-sectional study, 42 patients were recruited at the time of glaucoma surgery at the Moorfields Eye Hospital from September 1, 2014, to September 1, 2016. The participants were divided into those with fibrosis and those without fibrosis. MAIN OUTCOME AND MEASURES: Genotype-phenotype correlations of the IL6 or PRG4 gene and detailed clinical phenotype. The IL6 and PRG4 protein expression in conjunctival tissues was also assessed using in situ immunohistochemical analysis. Central bleb area, maximal bleb area, and bleb height were graded on a scale of 1 to 5 (1 indicating 0%; 2, 25%; 3, 50%; 4, 75%; and 5, 100%). Bleb vascularity was graded on a scale of 1 to 5 (1 indicating avascularity; 2, normal; 3, mild; 4, moderate; and 5, severe hyperemia). RESULTS: A total of 42 patients were recruited during the study period; 28 participants (67%) had previously undergone glaucoma surgery (fibrotic group) (mean [SD] age, 43.8 [3.6 years]; 16 [57%] female; 22 [79%] white), and 14 participants (33%) had not previously undergone glaucoma surgery (nonfibrotic group) (mean [SD] age, 47.7 [6.9] years; 4 [29%] female; 9 [64%] white). The fibrotic group had marked bleb scarring and vascularization and worse logMAR visual acuity. The mean (SD) grades were 1.4 (0.1) for central bleb area, 1.4 (0.1) for bleb height, and 3.4 (0.2) for bleb vascularity. The IL6 gene was upregulated in fibrotic cell lines (mean, 0.040) compared with nonfibrotic cell lines (mean, 0.011) (difference, 0.029; 95% CI, 0.015-0.043; P = .003). The PRG4 gene was also downregulated in fibrotic cell lines (0.002) compared with nonfibrotic cell lines (mean, 0.109; difference, 0.107; 95% CI, 0.104-0.110; P = .03). The study found a strong correlation between the IL6 gene and the number of glaucoma operations (r = 0.94, P < .001) and logMAR visual acuity (r = 0.64, P = .03). A moderate correlation was found between the PRG4 gene and the number of glaucoma operations (r = −0.72, P = .005) and logMAR visual acuity (r = −0.62, P = .03). CONCLUSIONS AND RELEVANCE: IL6 and PRG4 represent potential novel tissue biomarkers of disease severity and prognosis in conjunctival fibrosis after glaucoma surgery. Future longitudinal studies with multiple postoperative measures are needed to validate the effect of these potential biomarkers of fibrosis

    Association between platelet distribution width and serum uric acid in Chinese population

    Get PDF
    © 2019 International Union of Biochemistry and Molecular Biology Platelet distribution width (PDW) is a simple and inexpensive parameter, which could predict activation of coagulation efficiently. And it has been confirmed to have a significant role in many diseases. We aimed to explore the association between PDW and hyperuricemia in a large Chinese cohort. This cross-sectional study recruited 61,091 ostensible healthy participants (29,259 males and 31,832 females) after implementing exclusion criteria. Clinical data of the enrolled population included anthropometric measurements and serum parameters. Database was sorted by gender, and the association between PDW and hyperuricemia was analyzed after dividing PDW into quartiles. Crude and adjusted odds ratios of PDW for hyperuricemia with 95% confidence intervals were analyzed using binary logistic regression models. We found no significant difference in PDW values between the genders. Males showed significantly higher incidence of hyperuricemia than females. From binary logistic regression models, significant hyperuricemia risks only were demonstrated in PDW quartiles 2 and 3 in males (P < 0.05). This study displayed close association between PDW and hyperuricemia as a risk factor. It is meaningful to use PDW as a clinical risk predictor for hyperuricemia in males. © 2019 BioFactors, 45(3):326–334, 2019

    Carbon Nanotubes Enhance Cytotoxicity Mediated by Human Lymphocytes In Vitro

    Get PDF
    With the expansion of the potential applications of carbon nanotubes (CNT) in biomedical fields, the toxicity and biocompatibility of CNT have become issues of growing concern. Since the immune system often mediates tissue damage during pathogenesis, it is important to explore whether CNT can trigger cytotoxicity through affecting the immune functions. In the current study, we evaluated the influence of CNT on the cytotoxicity mediated by human lymphocytes in vitro. The results showed that while CNT at low concentrations (0.001 to 0.1 µg/ml) did not cause obvious cell death or apoptosis directly, it enhanced lymphocyte-mediated cytotoxicity against multiple human cell lines. In addition, CNT increased the secretion of IFN-γ and TNF-α by the lymphocytes. CNT also upregulated the NF-κB expression in lymphocytes, and the blockage of the NF-κB pathway reduced the lymphocyte-mediated cytotoxicity triggered by CNT. These results suggest that CNT at lower concentrations may prospectively initiate an indirect cytotoxicity through affecting the function of lymphocytes

    T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, but many patients have rare revertant fibres that express dystrophin. The skeletal muscle pathology of DMD patients includes immune cell infiltration and inflammatory cascades. There are several strategies to restore dystrophin in skeletal muscles of patients, including exon skipping and gene therapy. There is some evidence that dystrophin restoration leads to a reduction in immune cells, but dystrophin epitopes expressed in revertant fibres or following genome editing, cell therapy or microdystrophin delivery after AAV gene therapy may elicit T cell production in patients. This may affect the efficacy of the therapeutic intervention, and potentially lead to serious adverse events. To confirm and extend previous studies, we performed annual Enzyme- Linked Immunospot interferon-gamma assays on peripheral blood mononuclear cells from 77 paediatric boys with DMD recruited into a natural history study, 69 of whom (89.6%) were treated with corticosteroids. T cell responses to dystrophin were quantified using a total of 368 peptides spanning the entire dystrophin protein, organized into nine peptide pools. Peptide mapping pools were used to further localize the immune response in one positive patient. Six (7.8%) patients had a T cell-mediated immune response to dystrophin at at least one timepoint. All patients that had a positive result had been treated with corticosteroids, either prednisolone or prednisone. Our results show that ~8% of DMD individuals in our cohort have a pre-existing T cell-mediated immune response to dystrophin despite steroid treatment. Although these responses are relatively low-level, this information should be considered as a useful immunological baseline before undertaking clinical trials and future DMD studies. We further highlight the importance for a robust, reproducible standard operating procedure for collecting, storing and shipping samples from multiple centres to minimise the number of inconclusive data

    Dystrophin regulates peripheral circadian SRF signalling

    Get PDF
    Dystrophin is a sarcolemmal protein essential for muscle contraction and maintenance, absence of which leads to the devastating muscle wasting disease Duchenne muscular dystrophy (DMD)[1, 2]. Dystrophin has an actin-binding domain [3–5], which specifically binds and stabilises filamentous (F)-actin[6], an integral component of the RhoA-actin-serum response factor (SRF)-pathway[7]. The RhoA-actin-SRF-pathway plays an essential role in circadian signalling whereby the hypothalamic suprachiasmatic nucleus, transmits systemic cues to peripheral tissues, activating SRF and transcription of clock target genes[8, 9]. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised that dystrophin loss causes circadian deficits. Here we show for the first time alterations in the RhoA-actin-SRF-signalling-pathway, in both dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios and nuclear MRTF, dysregulation of core clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from DMD patients harbouring an array of mutations. Further, disrupted circadian locomotor behaviour was observed in dystrophic mice indicative of disrupted SCN signalling, and indeed dystrophin protein was absent in the SCN of dystrophic animals. Dystrophin is thus a critically important component of the RhoA-actin-SRF-pathway and a novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family
    corecore