1 research outputs found
Lattice strain distribution resolved by X-ray Bragg-surface diffraction in an Si matrix distorted by embedded FeSi2 nanoparticles
Out-of-plane and primarily in-plane lattice strain distributions, along the two perpendicular crystallographic directions on the subsurface of a silicon layer with embedded FeSi2 nanoparticles, were analyzed and resolved as a function of the synchrotron X-ray beam energy by using omega:phi mappings of the (111) and (111) Bragg-surface diffraction peaks. the nanoparticles, synthesized by ion-beam-induced epitaxial crystallization of Fe+-implanted Si(001), were observed to have different orientations and morphologies (sphere-and plate-like nanoparticles) within the implanted/recrystallized region. the results show that the shape of the synthesized material singularly affects the surrounding Si lattice. the lattice strain distribution elucidated by the nonconventional X-ray Bragg-surface diffraction technique clearly exhibits an anisotropic effect, predominantly caused by plate-shaped nanoparticles. This type of refined detection reflects a key application of the method, which could be used to allow discrimination of strains in distorted semiconductor substrate layers.Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPEMACoordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)UNIFESP, Inst Ciencia & Tecnol ICT, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniv Fed Maranhao, Dept Fis CCET, BR-65085580 Sao Luis, MA, BrazilUniv Fed Maranhao, CCSST, BR-65900410 Imperatriz, MA, BrazilUniv Fed Rio Grande do Sul, Inst Fis, Programa Posgrad Ciencias Mat PGCIMAT, BR-91501970 Porto Alegre, RS, BrazilCEA, Leti Minatec Campus, F-38054 Grenoble, FranceUniv Estadual Campinas, Inst Fis Gleb Wataghin IFGW, BR-13083859 Campinas, SP, BrazilUNIFESP, Inst Ciencia & Tecnol ICT, BR-12231280 Sao Jose Dos Campos, SP, BrazilCAPES: 2358-09-3Web of Scienc