10,104 research outputs found
Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes
We study excited-state properties of neutron-rich calcium isotopes based on
chiral two- and three-nucleon interactions. We first discuss the details of our
many-body framework, investigate convergence properties, and for two-nucleon
interactions benchmark against coupled-cluster calculations. We then focus on
the spectroscopy of 47-56Ca, finding that with both 3N forces and an extended
pfg9/2 valence space, we obtain a good level of agreement with experiment. We
also study electromagnetic transitions and find that experimental data are well
described by our calculations. In addition, we provide predictions for
unexplored properties of neutron-rich calcium isotopes.Comment: 15 pages, 22 figures, published versio
Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter
We review the impact of nuclear forces on matter at neutron-rich extremes.
Recent results have shown that neutron-rich nuclei become increasingly
sensitive to three-nucleon forces, which are at the forefront of theoretical
developments based on effective field theories of quantum chromodynamics. This
includes the formation of shell structure, the spectroscopy of exotic nuclei,
and the location of the neutron dripline. Nuclear forces also constrain the
properties of neutron-rich matter, including the neutron skin, the symmetry
energy, and the structure of neutron stars. We first review our understanding
of three-nucleon forces and show how chiral effective field theory makes unique
predictions for many-body forces. Then, we survey results with three-nucleon
forces in neutron-rich oxygen and calcium isotopes and neutron-rich matter,
which have been explored with a range of many-body methods. Three-nucleon
forces therefore provide an exciting link between theoretical, experimental and
observational nuclear physics frontiers.Comment: 28 pages, 13 figures, 1 tabl
Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties
We study ground- and excited-state properties of all sd-shell nuclei with
neutron and proton numbers 8 <= N,Z <= 20, based on a set of low-resolution
two- and three-nucleon interactions that predict realistic saturation
properties of nuclear matter. We focus on estimating the theoretical
uncertainties due to variation of the resolution scale, the low-energy
couplings, as well as from the many-body method. The experimental two-neutron
and two-proton separation energies are reasonably well reproduced, with an
uncertainty range of about 5 MeV. The first excited 2+ energies also show
overall agreement, with a more narrow uncertainty range of about 500 keV. In
most cases, this range is dominated by the uncertainties in the Hamiltonian.Comment: 6 pages, 4 figure
Recommended from our members
Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool.
Mesenchymal stem cells (MSCs) from adult somatic tissues may differentiate in vitro and in vivo into multiple mesodermal tissues including bone, cartilage, adipose tissue, tendon, ligament or even muscle. MSCs preferentially home to damaged tissues where they exert their therapeutic potential. A striking feature of the MSCs is their low inherent immunogenicity as they induce little, if any, proliferation of allogeneic lymphocytes and antigen-presenting cells. Instead, MSCs appear to be immunosuppressive in vitro. Their multilineage differentiation potential coupled to their immuno-privileged properties is being exploited worldwide for both autologous and allogeneic cell replacement strategies. Here, we introduce the readers to the biology of MSCs and the mechanisms underlying immune tolerance. We then outline potential cell replacement strategies and clinical applications based on the MSCs immunological properties. Ongoing clinical trials for graft-versus-host-disease, haematopoietic recovery after co-transplantation of MSCs along with haematopoietic stem cells and tissue repair are discussed. Finally, we review the emerging area based on the use of MSCs as a target cell subset for either spontaneous or induced neoplastic transformation and, for modelling non-haematological mesenchymal cancers such as sarcomas
Signatures of Dark Matter Scattering Inelastically Off Nuclei
Direct dark matter detection focuses on elastic scattering of dark matter
particles off nuclei. In this study, we explore inelastic scattering where the
nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt
de-excitation. We calculate the inelastic structure factors for the odd-mass
xenon isotopes based on state-of-the-art large-scale shell-model calculations
with chiral effective field theory WIMP-nucleon currents. For these cases, we
find that the inelastic channel is comparable to or can dominate the elastic
channel for momentum transfers around 150 MeV. We calculate the inelastic
recoil spectra in the standard halo model, compare these to the elastic case,
and discuss the expected signatures in a xenon detector, along with
implications for existing and future experiments. The combined information from
elastic and inelastic scattering will allow to determine the dominant
interaction channel within one experiment. In addition, the two channels probe
different regions of the dark matter velocity distribution and can provide
insight into the dark halo structure. The allowed recoil energy domain and the
recoil energy at which the integrated inelastic rates start to dominate the
elastic channel depend on the mass of the dark matter particle, thus providing
a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One
figure added; supplemental material (fits to the structure functions) added
as an Appendi
Inelastic light scattering and the excited states of many-electron quantum dots
A consistent calculation of resonant inelastic (Raman) scattering amplitudes
for relatively large quantum dots, which takes account of valence-band mixing,
discrete character of the spectrum in intermediate and final states, and
interference effects, is presented. Raman peaks in charge and spin channels are
compared with multipole strengths and with the density of energy levels in
final states. A qualitative comparison with the available experimental results
is given.Comment: 5 pages, accepted in J. Phys.: Condens. Matte
Spin-dependent WIMP scattering off nuclei
Chiral effective field theory (EFT) provides a systematic expansion for the
coupling of WIMPs to nucleons at the momentum transfers relevant to direct cold
dark matter detection. We derive the currents for spin-dependent WIMP
scattering off nuclei at the one-body level and include the leading long-range
two-body currents, which are predicted in chiral EFT. As an application, we
calculate the structure factor for spin-dependent WIMP scattering off 129,131Xe
nuclei, using nuclear interactions that have been developed to study nuclear
structure and double-beta decays in this region. We provide theoretical error
bands due to the nuclear uncertainties of WIMP currents in nuclei.Comment: 6 pages, 3 figures, published versio
- …