7 research outputs found
El laser como herramienta para el estudio de los contaminantes atmosfericos LIDAR-DIAL
Centro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de InformaciĂČn y DocumentaciĂČn CientĂŹficaSIGLEESSpai
EARLINET correlative measurements for CALIPSO
The European Aerosol Research Lidar Network (EARLINET) was established in 2000 to derive a comprehensive, quantitative, and statistically significant data base for the aerosol distribution on the European scale. At present, EARLINET consists of 25 stations: 16 Raman lidar stations, including 8 multi-wavelength Raman lidar stations which are used to retrieve aerosol microphysical properties. EARLINET. performs a rigorous quality assurance program for instruments and evaluation algorithms. All stations measure simultaneously on a predefined schedule at three dates per week to obtain unbiased data for climatological studies. Since June 2006 the first backscatter lidar is operational aboard the CALIPSO satellite. EARLINET represents an excellent tool to validate CALIPSO lidar data on a continental scale. Aerosol extinction and lidar ratio measurements provided by the network will be particularly important for that validation. The measurement strategy of EARLINET is as follows: Measurements are performed at all stations within 80 km from the overpasses and additionally at the lidar station which is closest to the actually overpassed site. If a multi-wavelength Raman lidar station is overpassed then also the next closest 3+2 station performs a measurement. Altogether we performed more than 1000 correlative observations for CALIPSO between June 2006 and June 2007. Direct intercomparisons between CALIPSO profiles and attenuated backscatter profiles obtained by EARLINET lidars look very promising. Two measurement examples are used to discuss the potential of multi-wavelength Raman lidar observations for the validation and optimization of the CALIOP Scene Classification Algorithm. Correlative observations with multi-wavelength Raman lidars provide also the data base for a harmonization of the CALIPSO aerosol data and the data collected in future ESA lidar-in-space missions
EARLINET observations related to volcanic eruptions (2000-2010)
A European Aerosol Research Lidar Network to Establish an Aerosol ClimatologyAerosols affect life on earth in several ways. They play an important role in the climate system; the effect of aerosols on the global climate system is one of the major uncertainties of present climate predictions. They play a major role in atmospheric chemistry and hence affect the concentrations of other potentially harmful atmospheric constituents, e.g. ozone. They are an important controlling factor for the radiation budget, in particular in the UV-B part of the spectrum. At ground level, they can be harmful, even toxic, to man, animals, and plants. Because of these adverse effects that aerosols can have on human life, it is necessary to achieve an advanced understanding of the processes that generate, redistribute, and remove aerosols in the atmosphere.A quantitative dataset describing the aerosol vertical, horizontal, and temporal distribution, including its variability on a continental scale, is necessary. The dataset is used to validate and improve models that predict the future state of the atmosphere and its dependence on different scenarios describing economic development, including those actions taken to preserve the quality of the environment. The EARLINET data set is the most comprehensive compilation of data available for this purpose.This project description is taken from: http://www.earlinet.org/index.php?id=earlinet_homepageSummary: Aerosols originating from volcanic emissions have an impact on the climate: sulfate and ash particles from volcanic emissions reflect solar radiation, act as cloud condensation and ice nuclei, and modify the radiative properties and lifetime of clouds, and therefore influence the precipitation cycle. These volcanic particles can also have an impact on environmental conditions and could be very dangerous for aircraft in flight. In addition to the routine measurements, further EARLINET observations are devoted to monitor volcano eruptions. The EARLINET volcanic dataset includes extended observations related to two different volcanoes in Europe Mt. Etna (2001 and 2002 eruptions), and the Eyjafjallajokull volcano in Iceland (April - May 2010 eruption). This dataset includes also recent events of volcanic eruptions in the North Pacific region (2008-2010) that emitted sulfuric acid droplets into the upper troposphere - lower stratosphere (UTLS) height region of the northern hemisphere. The EARLINET volcanic observations in the UTLS are complemented by the long-term stratospheric aerosol observations collected in the Stratosphere category
EARLINET correlative observations for CALIPSO (2006-2010)
A European Aerosol Research Lidar Network to Establish an Aerosol ClimatologyAerosols affect life on earth in several ways. They play an important role in the climate system; the effect of aerosols on the global climate system is one of the major uncertainties of present climate predictions. They play a major role in atmospheric chemistry and hence affect the concentrations of other potentially harmful atmospheric constituents, e.g. ozone. They are an important controlling factor for the radiation budget, in particular in the UV-B part of the spectrum. At ground level, they can be harmful, even toxic, to man, animals, and plants. Because of these adverse effects that aerosols can have on human life, it is necessary to achieve an advanced understanding of the processes that generate, redistribute, and remove aerosols in the atmosphere.A quantitative dataset describing the aerosol vertical, horizontal, and temporal distribution, including its variability on a continental scale, is necessary. The dataset is used to validate and improve models that predict the future state of the atmosphere and its dependence on different scenarios describing economic development, including those actions taken to preserve the quality of the environment. The EARLINET data set is the most comprehensive compilation of data available for this purpose.This project description is taken from: http://www.earlinet.org/index.php?id=earlinet_homepageSummary: Since the beginning of CALIPSO observations in June 2006 EARLINET has performed correlative measurements during nearby overpasses of the satellite at individual stations following a dedicated observational strategy. The EARLINET-CALIPSO correlative measurement plan considers the criteria established in the CALIPSO validation plan (http://calipsovalidation.hamptonu.edu). Participating EARLINET stations perform measurements, as close in time as possible and for a period of at least 30 min up to several hours, when CALIPSO overpasses their location within a horizontal radius of 100 km. Within the 16-day observational cycle of CALIPSO each station is overpassed within this distance 1-2 times during daytime (typically between 1100 and 1400 UTC) and 1-2 times during night time (typically between 0000 and 0300 UTC). Additional measurements are performed, mainly on a non-regular basis, when CALIPSO overpasses a neighboring station in order to study the horizontal variability of the aerosol distribution. The time schedule for correlative observations is calculated starting from the high-resolution ground-track data provided by NASA, and is updated and distributed to whole network weekly. The EARLINET-CALIPSO correlative dataset represents a statistically significant data set to be used for the validation and full exploitation of the CALIPSO mission, for studying the representativeness of cross sections along an orbit against network observations on a continental scale, and for supporting the continuous, harmonized observation of aerosol and clouds with remote-sensing techniques from space over long time periods
EARLINET climatology (2000-2010)
A European Aerosol Research Lidar Network to Establish an Aerosol ClimatologyAerosols affect life on earth in several ways. They play an important role in the climate system; the effect of aerosols on the global climate system is one of the major uncertainties of present climate predictions. They play a major role in atmospheric chemistry and hence affect the concentrations of other potentially harmful atmospheric constituents, e.g. ozone. They are an important controlling factor for the radiation budget, in particular in the UV-B part of the spectrum. At ground level, they can be harmful, even toxic, to man, animals, and plants. Because of these adverse effects that aerosols can have on human life, it is necessary to achieve an advanced understanding of the processes that generate, redistribute, and remove aerosols in the atmosphere.A quantitative dataset describing the aerosol vertical, horizontal, and temporal distribution, including its variability on a continental scale, is necessary. The dataset is used to validate and improve models that predict the future state of the atmosphere and its dependence on different scenarios describing economic development, including those actions taken to preserve the quality of the environment. The EARLINET data set is the most comprehensive compilation of data available for this purpose.This project description is taken from: http://www.earlinet.org/index.php?id=earlinet_homepageSummary: EARLINET climatological lidar observations are performed on a regularschedule of one daytime measurement per week around noon (on Monday), when theboundary layer is usually well developed, and two night-time measurements per week(on Monday and Thursday), with low background light, in order to perform Ramanextinction measurements. This regular schedule for observations minimizes the biasin the dataset possibly related to specific measurement conditions. The resultingdataset is used to obtain unbiased data for climatological studies.This dataset contains profiles of aerosol extinction, backscatter and lidar ratio.Several aerosol extinction/backscatter datasets can be present for the sameclimatological measurement in order to provide profiles either with a better temporalresolution or with an extended height range by using a larger temporal average.This is by far the largest dataset on the aerosol vertical distribution, and it isthe only one which is collected systematically and is covering a whol