10,317 research outputs found
OH Maser sources in W49N: probing differential anisotropic scattering with Zeeman pairs
Our analysis of a VLBA 12-hour synthesis observations of the OH masers in
W49N has provided detailed high angular-resolution images of the maser sources,
at 1612, 1665 and 1667 MHz. The images, of several dozens of spots, reveal
anisotropic scatter broadening; with typical sizes of a few tens of
milli-arc-seconds and axial ratios between 1.5 to 3. The image position angles
oriented perpendicular to the galactic plane are interpreted in terms of
elongation of electron-density irregularities parallel to the galactic plane,
due to a similarly aligned local magnetic field. However, we find the apparent
angular sizes on the average a factor of 2.5 less than those reported by Desai
et al., indicating significantly less scattering than inferred earlier. The
average position angle of the scattered broadened images is also seen to
deviate significantly (by about 10 degrees) from that implied by the magnetic
field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our
set, we find significant differences in the scatter broadened images for the
two hands of polarization, even when apparent velocity separation is less than
0.1 km/s. Here we present the details of our observations and analysis, and
discuss the interesting implications of our results for the intervening
anisotropic magneto-ionic medium, as well as a comparison with the expectations
based on earlier work.Comment: 5 pages, 3 figures, submitted to the Proceedings of the IAU Symposium
287: "Cosmic masers - from OH to H0
Microscopic mass estimations
The quest to build a mass formula which have in it the most relevant
microscopic contributions is analyzed. Inspired in the successful Duflo-Zuker
mass description, the challenges to describe the shell closures in a more
transparent but equally powerful formalism are discussed.Comment: 14 pages, 6 figures, submitted to Journal of Physics G, Focus issue
on Open Problems in Nuclear Structure Theor
Linear conjugacy of chemical kinetic systems
Two networks are said to be linearly conjugate if the solution of their dynamic equations can be transformed into each other by a positive linear transformation. The study on dynamical equivalence in chemical kinetic systems was initiated by Craciun and Pantea in 2008 and eventually led to the Johnston-Siegel Criterion for linear conjugacy (JSC). Several studies have applied Mixed Integer Linear Programming (MILP) approach to generate linear conjugates of MAK (mass action kinetic) systems, Bio-CRNs (which is a subset of Hill-type kinetic systems when the network is restricted to digraphs), and PL-RDK (complex factorizable power law kinetic) systems. In this study, we present a general computational solution to construct linear conjugates of any "rate constant-interaction function decomposable" (RID) chemical kinetic systems, wherein each of its rate function is the product of a rate constant and an interaction function. We generate an extension of the JSC to the complex factorizable (CE) subset of RID kinetic systems and show that any non-complex factorizable (NE) RID kinetic system can be dynamically equivalent to a CF system via transformation. We show that linear conjugacy can be generated for any RID kinetic systems by applying the JSC to any NE kinetic system that are transformed to CF kinetic system
Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157
Interstellar molecules with a peptide link -NH-C(=O)-, like formamide
(NHCHO), acetamide (NHCOCH) and isocyanic acid (HNCO) are
particularly interesting for their potential role in pre-biotic chemistry. We
have studied their emission in the protostellar shock regions L1157-B1 and
L1157-B2, with the IRAM 30m telescope, as part of the ASAI Large Program.
Analysis of the line profiles shows that the emission arises from the outflow
cavities associated with B1 and B2. Molecular abundance of
and are derived for
formamide and isocyanic acid, respectively, from a simple rotational diagram
analysis. Conversely, NHCOCH was not detected down to a relative
abundance of a few . B1 and B2 appear to be among the richest
Galactic sources of HNCO and NHCHO molecules. A tight linear correlation
between their abundances is observed, suggesting that the two species are
chemically related. Comparison with astrochemical models favours molecule
formation on ice grain mantles, with NHCHO generated from hydrogenation of
HNCO.Comment: 11 pages, 9 figures. Accepted for publication in MNRAS Main Journal.
Accepted 2014 August 19, in original form 2014 July
Recommended from our members
[Re] Measuring [LEED] sustainability: from a global rating system to tropical specificity
This paper explores the applicability of the LEED certification system through the case study of Puerto Rico (P.R.), a United States (U.S.) Commonwealth island in the Caribbean, where LEED has become widely recognized as a standard because of the geopolitical relationship with the mainland. Although LEED is used internationally, it was initially developed by the U.S. Green Building Council as a tool to measure building performance in a modern American urban environment with temperate climate, a steady economy and easy access to technology. Furthermore, regionalization strategies such as Regional Priority Credits (RPCs) and Alternate Compliance Paths (ACPs), do not address the sociocultural reality of many regions. Therefore, the focus of this research is to analyse what indicators should be added, modified or substituted to develop a revised LEED model for the specific sociocultural context of P.R.? A mixed methods research will be used to compare LEED criteria with Sustainable Assessment Systems (SAS) such as the Building Research Establishment Environmental Assessment Method, the Living Building Challenge and SB Tool. Also, SAS in tropical countries such as Singapore (BCA Green Mark), Costa Rica (RESET) and India (TERI-GRIHA) will be examined. Case studies will be analysed with a main focus in Schools
- …