3 research outputs found

    Expression Of Vegf And Flk-1 And Flt-1 Receptors During Blood-brain Barrier (bbb) Impairment Following Phoneutria Nigriventer Spider Venom Exposure

    Get PDF
    Apart from its angiogenic and vascular permeation activity, the vascular endothelial growth factor (VEGF) has been also reported as a potent neuronal protector. Newborn rats with low VEGF levels develop neuron degeneration, while high levels induce protective mechanisms in several neuropathological conditions. Phoneutria nigriventer spider venom (PNV) disrupts the blood-brain barrier (BBB) and causes neuroinflammation in central neurons along with excitotoxic signals in rats and humans. All these changes are transient. Herein, we examined the expression of VEGF and its receptors, Flt-1 and Flk-1 in the hippocampal neurons following envenomation by PNV. Adult and neonatal rats were evaluated at time limits of 2, 5 and 24 h. Additionally, BBB integrity was assessed by measuring the expression of occludin, β-catenin and laminin and neuron viability was evaluated by NeuN expression. VEGF, Flt-1 and Flk-1 levels increased in PNV-administered rats, concurrently with respective mRNAs. Flt-1 and Flk-1 immunolabeling was nuclear in neurons of hippocampal regions, instead of the VEGF membrane-bound typical location. These changes occurred simultaneously with the transient decreases in BBB-associated proteins and NeuN positivity. Adult rats showed more prominent expressional increases of the VEGF/Flt-1/Flk-1 system and earlier recovery of BBB-related proteins than neonates. We conclude that the reactive expressional changes seen here suggest that VEGF and receptors could have a role in the excitotoxic mechanism of PNV and that such role would be less efficient in neonate rats. © 2013 by the authors; licensee MDPI, Basel, Switzerland.51225722588Vassilevsky, A.A., Koslov, S.A., Egorov, T.A., Grishin, E.V., Purification and characterization of biologically active peptides from spider venoms (2010) Methods Mol. Biol., 615, pp. 87-100Reis, H.J., Prado, M.A., Kalapothakis, E., Cordeiro, M.N., Diniz, C.R., de Marco, L.A., Gomez, M.V., Romano-Silva, M.A., Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer (1999) Biochem. J., 343, pp. 413-418Gomez, M.V., Kalapothakis, E., Guatimosim, C., Prado, M.A., Phoneutria nigriventer venom: A cocktail of toxins that affect ion channels (2002) Cell. Mol. Neurobiol., 22, pp. 579-588Bucaretchi, F., Deus Reinaldo, C.R., Hyslop, S., Madureira, P.R., de Capitani, E.M., Vieira, R.J., A clinico-epidemiological study of bites by spiders of the genus Phoneutria (2000) Rev. Inst. Med. Trop. São Paulo, 42, pp. 17-21Le Sueur, L., Kalapothakis, E., Cruz-Höfling, M.A., Breakdown of the blood-brain barrier and neuropathological changes induced by Phoneutria nigriventer spider venom (2003) Acta Neuropathol., 105, pp. 125-134Le Sueur, L., Collares-Buzato, C.B., Cruz-Höfling, M.A., Mechanisms involved in the blood-brain barrier increased permeability induced by Phoneutria nigriventer spider venom in rats (2004) Brain Res., 1027, pp. 38-47Rapôso, C., Odorissi, P.A.M., Oliveira, A.L.R., Aoyama, H., Ferreira, C.V., Verinaud, L., Fontana, K., da Cruz-Höfling, M.A., Effect of Phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood-brain barrier (2012) Neurochem. Res., 37, pp. 1967-1981Nag, S., Kapadia, A., Stewart, D.J., Review: Molecular pathogenesis of blood-brain barrier breakdown in acute brain injury (2011) Neuropathol. Appl. Neurobiol., 37, pp. 3-23Olsson, A.K., Dimberg, A., Kreuger, J., Claesson-Welsh, L., VEGF receptor signaling in control of vascular function (2006) Nat. Rev. Mol. Cell Biol., 7, pp. 359-371Sköld, M.K., Risling, M., Holmin, S., Inhibition of vascular endothelial growth factor receptor 2 activity in experimental brain contusions aggravates injury outcome and leads to early increased neuronal and glial degeneration (2006) Eur. J. Neurosci., 23, pp. 21-34Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M., Carmeliet, P., Role and therapeutic potential of VEGF in the nervous system (2009) Physiol. Rev., 89, pp. 607-648Morin-Brureau, M., Rigau, V., Lerner-Natoli, M., Why and how to target angiogenesis in focal epilepsies (2012) Epilepsia, 53, pp. 64-68Rapôso, C., Zago, G.M., Silva, G.H., Cruz-Höfling, M.A., Acute blood brain barrier permeabilization in rats after systemic Phoneutria nigriventer venom (2007) Brain Res., 1149, pp. 18-29Mendonça, M.C., Soares, E.S., Stávale, L.M., Irazusta, S.P., Cruz-Höfling, M.A., Upregulation of the vascular endothelial growth factor, Flt-1, in rat hippocampal neurons after envenoming by Phoneutria nigriventerage-related modulation (2012) Toxicon, 60, pp. 656-664Cruz-Höfling, M.A., Zago, G.M., Melo, L.L., Rapôso, C., C-FOS and n-NOS reactive neurons in response to circulating Phoneutria nigriventer spider venom (2007) Brain Res. Bull., 73, pp. 114-126Cruz-Höfling, M.A., Rapôso, C., Verinaud, L., Zago, G.M., Neuroinflammationand astrocytic reaction in the course of Phoneutria nigriventer (armed-spider) blood-brain barrier (BBB) opening (2009) Neurotoxicology, 30, pp. 636-646Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., Greenberg, D.A., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 11946-11950Ferrara, N., Gerber, H.P., le Couter, J., The biology of VEGF and its receptors (2003) Nat. Med., 9, pp. 669-676Semenza, G., Signal transductions to hypoxia-inducible factor 1 (2002) Biochem. Pharmacol., 64, pp. 993-998Góra-Kupilas, K., Jośko, J., The neuroprotective function of vascular endothelial growth factor (VEGF) (2005) Folia Neuropathol., 43, pp. 31-39Zachary, I., Neuroprotective role of vascular endothelial growth factor: Signaling mechanisms, biological function, and therapeutic potential (2005) Neurosignals, 14, pp. 207-221Ogunshola, O.O., Al-Ahmad, A., HIF-1 at the blood-brain barrier: A mediator of permeability? (2012) High Alt. Med. Biol., 13, pp. 153-161Stávale, L.M., Soares, E.S., Mendonça, M.C., Irazusta, S.P., da Cruz Höfling, M.A., Temporal relationship between aquaporin-4 and glial fibrillary acidic protein in cerebellum of neonate and adult rats administered a BBB disrupting spider venom (2013) Toxicon, 66, pp. 37-46Risau, W., Esser, S., Engelhardt, B., Differentiation of blood-brain barrier endothelial cells (1998) Pathol. Biol., 46, pp. 171-175Witt, K.A., Mark, K.S., Hom, S., Davis, T.P., Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression (2003) Am. J. Physiol. Heart Circ. Physiol., 285, pp. H2820-H2831Nico, B., Ribatti, D., Morphofunctional aspects of the blood-brain barrier (2012) Curr. Drug Metab., 13, pp. 50-60Zachary, I., Gliki, G., Signaling transduction mechanism mediating biological actions of the vascular endothelial growth factor family (2001) Cardiovasc. Res., 49, pp. 568-581Neuwelt, E., Abbott, N.J., Abrey, L., Banks, W.A., Blakley, B., Davis, T., Engelhardt, B., Nutt, J., Strategies to advance translational research into brain barriers (2008) Lancet Neurol., 7, pp. 84-96Zlokovic, B.V., Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders (2011) Nat. Rev. Neurosci., 12, pp. 723-738Tillo, M., Ruhrberg, C., McKenzie, F., Emerging roles for semaphorins and VEGFs in synaptogenesis and synaptic plasticity (2012) Cell Adhes. Migr., 6, pp. 541-546Dent, M.A., Segura-Araya, E., Alva-Medina, J., Aranda-Anzaldo, A., NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix (2010) FEBS Lett., 584, pp. 2767-2771Snyder, J.S., Ferrante, S.C., Cameron, H.A., Late maturation of adult-born neurons in the temporal dentate gyrus (2012) PLoS One, 7, pp. e48757Amaral, D.G., Scharfman, H.E., Lavenex, P., The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies) (2007) Prog. Brain Res., 163, pp. 3-22Treves, A., Tashiro, A., Witter, M.E., Moser, E.I., What is the mammalian dentate gyrus good for? (2008) Neuroscience, 154, pp. 1155-1172Prado, M.A., Guatimosim, C., Gomez, M.V., Diniz, C., Cordeiro, M.N., Romano-Silva, M.A., A novel tool for the investigation of glutamate release from rat cerebrocorticalsynaptosomes: The toxin Tx3-3 from the venom of the spider Phoneutria nigriventer (1996) Biochem. J., 314 (PART 1), pp. 145-150Vieira, L.B., Kushmerick, C., Reis, H.J., Diniz, C.R., Cordeiro, M.N., Prado, M.A., Kalapothakis, E., Gomez, M.V., PnTx3-6 a spider neurotoxin inhibits K+-evoked increase in Ca2+(i) and Ca2+-dependent glutamate release in synaptosomes (2003) Neurochem. Int., 42, pp. 277-282Mafra, R.A., Figueiredo, S.G., Diniz, C.R., Cordeiro, M.N., Cruz, J.D., de Lima, M.E., PhTx4, a new class of toxins from Phoneutria nigriventer spider venom inhibits the glutamate uptake in rat brain synaptosomes (1999) Brain Res., 831, pp. 297-300Meissirel, C., Ruiz de Almodovar, C., Knevels, E., Coulon, C., Chounlamountri, N., Segura, I., de Rossi, P., Deléglise, B., VEGF modulates NMDA receptors activity in cerebellar granule cells trough Src-family kinases before synapse formation (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 13782-13787Ma, Y.Y., Li, K.Y., Huang, Y.L., Huang, Y., Sun, F.Y., Vascular endothelial growth factor acutely reduces calcium influx via inhibition of the Ca2+ channels in rat hippocampal neurons (2009) J. Neurosci. Res., 87, pp. 393-402Bogaert, E., van Damme, P., Poesen, K., Dhondt, J., Hersmus, N., Kiraly, D., Scheveneels, W., van den Bosch, L., VEGF protects motor neurons against excitotoxicity by upregulation of GluR2 (2010) Neurobiology, 31, pp. 2185-2191Cammalleri, M., Martini, D., Ristori, C., Timperio, A.M., Bagnoli, P., Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity (2011) Eur. J. Neurosci., 33, pp. 482-498Mukherjee, S., Tessema, M., Wandinger-Ness, A., Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function (2006) Circ. Res., 98, pp. 743-756Orth, J.D., McNiven, M.A., Get off my back! Rapid receptor internalization through circular dorsal ruffles (2006) Cancer Res., 66, pp. 11094-1109

    Evidences Of Endocytosis Via Caveolae Following Blood-brain Barrier Breakdown By Phoneutria Nigriventer Spider Venom

    No full text
    Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability. © 2014 Elsevier Ireland Ltd.2293415422Abbott, N., Patabendige, A.A., Dolman, D.E., Yusof, S.R., Begley, D.J., Structure and function of the blood-brain barrier (2010) Neurobiol. Dis., 37, pp. 13-25Altman, J., Bayer, S.A., (1997) Development of the Cerebellar System: in Relation to its Evolution, Structure, and Functions, , CRC Press (Boca Ratón), New YorkBergensen, L.H., Gundersen, V., Morphological evidence for vesicular glutamate release from astrocytes (2009) Neuroscience, 158, pp. 260-265Boyd, N.L., Park, H., Yi, H., Boo, Y.C., Sorescu, G.P., Sykes, M., Jo, H., Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells (2003) Am. J. Physiol. Heart Circ. Physiol., 285, pp. H1113-H1122Bradbury, M.W., The blood-brain barrier (1993) Exp. Physiol., 74, pp. 453-472Brazil, V., Vellard, J., Contribuição ao estudo do veneno das aranhas (1925) Mem. Inst. Butantan, 2, pp. 5-77Bucaretchi, F., Reinaldo, C.R.D., Hyslop, S., Madureira, P.R., de Capitani, E.M., Vieira, R.J., A clinico-epidemiological study of bites by spiders of the genus Phoneutria (2000) Rev. Inst. Med. Trop. São Paulo, 42, pp. 17-21Bucaretchi, F., Mello, S.M., Vieira, R.J., Mamoni, R.L., Blotta, M.H., Antunes, E., Hyslop, S., Systemic envenomation caused by the wandering spider Phoneutria nigriventer with quantification of circulating venom (2008) Clin. Toxicol., 46, pp. 885-889Chang, C., Chen, S., Lee, T., Lee, H., Chen, S., Shyue, S., Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage (2011) Am. J. Pathol., 178, pp. 1749-1761Cruz-Höfling, M.A., Zago, G.M., Melo, L.L., Rapôso, C., C-FOS and n-NOS reactive neurons in response to circulating Phoneutria nigriventer spider venom (2007) Brain Res. Bull., 73, pp. 114-126Cruz-Höfling, M.A., Rapôso, C., Verinaud, L., Zago, G.M., Neuroinflammation and astrocytic reaction in the course of Phoneutria nigriventer (armed-spider) blood-brain barrier (BBB) opening (2009) Neurotoxicol, 30, pp. 636-646Fielding, C.J., Fielding, P.E., Caveolae and intracellular trafficking of cholesterol (2001) Adv. Drug Deliv. Rev., 49, pp. 251-264Gomez, M.V., Kalapothakis, E., Guatimosim, C., Prado, M.A., Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels (2002) Cell. Mol. Neurobiol., 22, pp. 579-588Hansen, C.G., Nichols, B.J., Exploring the caves: cavins caveolins and caveolae (2010) Trends Cell Biol., 20, pp. 177-186Head, B.P., Hu, Y., Finley, J.C., Saldana, M.D., Bonds, J.A., Miyanohara, A., Niesman, I.R., Patel, P.M., Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons (2011) J. Biol. Chem., 23 (286), pp. 33310-33321Hirota, M., Moro, O., MIP-1β, a novel biomarler for in vitro sensitization test using human monocytic cell line (2006) Toxicol. In Vitro, 20, pp. 736-742Ikezu, T., Ueda, H., Trapp, B.D., Nishiyama, K., Sha, J.F., Volonte, D., Galbiati, F., Okamoto, T., Affinity-purification and characterization of caveolins from the brain differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types (1998) Brain Res., 804, pp. 177-192Lajoie, P., Nabi, I.R., Lipid rafts caveolae and their endocytosis (2010) Int. Rev. Cell Mol. Biol., 282, pp. 135-163Le Sueur, L., Kalapothakis, E., Cruz-Höfling, M.A., Breakdown of the blood-brain barrier and neuropathological changes induced by Phoneutria nigriventer spider venom (2003) Acta Neuropathol., 2, pp. 125-134Le Sueur, L.P., Collares-Buzato, C.B., Cruz-Höfling, M.A., Mechanisms involved in the blood-brain barrier increased permeability induced by Phoneutria nigriventer spider venom in rats (2004) Brain Res., 1027, pp. 38-47Love, S., Cruz-Höfling, M.A., Acute swelling of nodes of Ranvier caused by venoms which slow inactivation of sodium channels (1986) Acta Neuropathol., 70, pp. 1-9Luoma, J.I., Boulware, M.I., Mermelstein, P.G., Caveolin proteins and estrogen signaling in the brain (2008) Mol. Cell. Endocrinol., 290, pp. 8-13Mendonça, M.C., Soares, E.S., Stávale, L.M., Irazusta, S.P., Cruz-Höfling, M.A., Upregulation of the vascular endothelial growth factor, Flt-1, in rat hippocampal neurons after envenoming by Phoneutria nigriventerage-related modulation (2012) Toxicon, 60, pp. 656-664Nedergaard, M., Direct signaling from astrocytes to neurons in cultures of mammalian brain cells (1994) Science, 263, pp. 1768-1771Nag, S., Manias, J.L., Stewart, D.J., Expression of endothelial phosphorylated caveolin-1 is increased in brain injury (2009) Neuropathol. Appl. Neurobiol., 35, pp. 417-426Nag, S., Kapadia, A., Stewart, D.J., Molecular pathogenesis of blood-brain barrier breakdown in acute brain injury (2011) Neuropathol. Appl. Neurobiol., 37, pp. 3-23Nassoy, P., Lamaze, C., Stressing caveolae new role in cell mechanics (2012) Trends Cell Biol., 22, pp. 381-389Nico, B., Ribatti, D., Frigeri, A., Nicchia, G.P., Corsi, P., Svelto, M., Roncali, L., Aquaporin-4 expression during development of the cerebellum (2002) Cerebellum, 1, pp. 207-212Parat, M.O., Fox, P.L., Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible (2001) J. Biol. Chem., 276, pp. 15776-15782Pelkmans, L., Helenius, A., Endocytosis via caveolae (2002) Traffic, 3, pp. 311-320Pinheiro, A.C., Gomez, R.S., Massensini, A.R., Cordeiro, M.N., Richardson, M., Romano-Silva, M.A., Prado, M.A., Gomez, M.V., Neuroprotective effect on brain injury by neurotoxin from the spider Phoneutria nigriventer (2006) Neurochem. Int., 49, pp. 543-547Predescu, S.A., Predescu, D.N., Malik, A.B., Molecular determinants of endothelial transcytosis and their role in endothelial permeability (2007) Am. J. Physiol. Lung Cell Mol. Physiol., 293, pp. L823-L842Quest, A.F., Leyton, L., Párraga, M., Caveolins, caveolae, and lipid rafts in cellular transport signaling and disease (2004) Biochem. Cell Biol., 82, pp. 129-144Rapôso, C., Zago, G.M., da Silva, G.H., da Cruz-Höfling, M.A., Acute blood-brain barrier permeabilization in rats after systemic Phoneutria nigriventer venom (2007) Brain Res., 1149, pp. 18-29Rapôso, C., Odorissi, P.A.M., Oliveira, A.L.R., Aoyama, H., Ferreira, C.V., Verinaud, L., Fontana, K., Cruz-Höfling, M.A., Effect of Phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood-brain barrier (2012) Neurochem. Res., 37, pp. 1967-1981Razani, B., Woodman, S.E., Lisanti, M.P., Caveolae from cell biology to animal physiology (2002) Pharmacol. Rev., 54, pp. 431-467Risau, W., Esser, S., Engelhardt, B., Differentiation of blood-brain barrier endothelial cells (1998) Pathol. Biol., 46, pp. 171-175Rizzo, V., Morton, C., De Paola, N., Schnitzer, J.E., Davies, P.F., Recruitment of endothelial caveolae into mechano transduction pathways by flow conditioning in vitro (2003) Am. J. Physiol. Heart Circ. Physiol., 285, pp. H1720-H1729Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R., Anderson, R.G., Caveolin, a protein component of caveolae membrane coats (1992) Cell, 68, pp. 673-682Scherer, P.E., Tang, Z.L., Chun, M.C., Sargiacomo, M., Lodish, H.F., Lisanti, M.P., Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution: identification and epitope mapping of an isoform-specific monoclonal antibody probe (1995) J. Biol. Chem., 270, pp. 16395-16401Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., Selbach, M., Global quantification of mammalian gene expression control (2011) Nature, 473 (19), pp. 337-342Solomon, R.W., Free and open source software for manipulation of digital images (2009) AJR Am. J. Roentgenol., 192, pp. 330-334Sowa, G., Caveolae, caveolins, cavins, and endothelial cell function: new insights (2012) Front Physiol., pp. 2-120Stávale, L.M., Soares, E.S., Mendonça, M.C., Irazusta, S.P., da Cruz Höfling, M.A., Temporal relationship between aquaporin-4 and glial fibrillary acidic protein in cerebellum of neonate and adult rats administered a BBB disrupting spider venom (2013) Toxicon, 66, pp. 37-46Stern, C.M., Mermelstein, P.G., Caveolin regulation of neuronal intracellular signaling (2010) Cell. Mol. Life Sci., 67, pp. 3785-3795Verkman, A.S., Binder, D.K., Bloch, O., Auguste, K., Papadopoulos, M.C., Three distinct roles of aquaporin-4 in brain function revealed by knockout mice (2006) Biochim. Biophys. Acta, 1758, pp. 1085-1093Virgintino, D., Robertson, D., Errede, M., Benagiano, V., Tauer, U., Roncalia, L., Bertossi, M., Expression of caveolin-1 in human brain microvessels (2002) Neuroscience, 115, pp. 1145-1152Willmann, R., Pun, S., Stallmach, L., Sadasivam, G., Santos, A.F., Caroni, P., Fuhrer, C., Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction (2006) EMBO J., 25, pp. 4050-4060Xia, C., Zhang, Z., Xue, Y., Wang, P., Liu, Y., Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin (2009) J. Neuroncol., 94, pp. 41-50Yu, J., Bergaya, S., Murata, T., Alp, I.F., Bauer, M.P., Lin, M.I., Drab, M., Sessa, W.C., Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels (2006) J. Clin. Invest., 116, pp. 1284-1291Zhao, Y.L., Song, J.N., Zhang, M., Role of caveolin-1 in the biology of the blood-brain barrier (2014) Rev. Neurosci., 25, pp. 247-25

    Upregulation Of The Vascular Endothelial Growth Factor, Flt-1, In Rat Hippocampal Neurons After Envenoming By Phoneutria Nigriventer; Age-related Modulation

    No full text
    This study characterizes the distribution and quantifies the expression of the tyrosine kinase receptor for the vascular endothelial growth factor (VEGF), Flt-1, in the rat hippocampus following intra-peritoneal injection of Phoneutria nigriventer venom (PNV). Post-natal day 14 (P14) and 8-10 weeks (adult) old rats were used and analyses were done at 1, 2, 5 and 24 h after venom exposure and compared with saline-injected counterparts. PNV-injected animals showed hippocampal venules with perivascular edema indicating blood-brain barrier (BBB) dysfunction. This was accompanied by significant overexpression of Flt-1 which though was not the same for CA1, CA2, CA3 and dentate gyrus (DG) hippocampal regions, neither for P14 and adult rats. Regional analysis using GIMP methodology showed that Flt-1 was constitutively distributed more densely in neurons of DG, followed by CA1/CA2 and CA3 of both control P14 and adult animals, without variation over time, but significantly more expressed in P14 than in adults. A time-course analysis showed that Flt-1 upregulation was progressive and that neurons VEGFR1/Flt-1+ of PNV-exposed animals are timely and regionally modulated depending on the hippocampal region, being CA2 the least responsive region regardless animal's age, whilst DG was the most susceptible with adult animals having higher upregulation than neonates. Since VEGF has been reported to confer protection in several pathological processes we suggest that VEGF may be involved in hippocampal neurons response via Flt-1 mediation following PNV envenoming; its higher upregulation in adult envenomed rats may be an indication that Flt-1 neuroprotective mediation is more efficient with age. The Flt-1 upregulation and the incidence of perivascular edema in young animals may indicate a pro-inflammatory role of the receptor. © 2012 Elsevier Ltd.604656664Altman, J., Das, G.D., Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats (1965) J. Comp. Neurol., 124, pp. 319-335Brockington, A., Lewist, C., Wharton, S., Shaw, P.J., Vascular endothelial growth factor and the nervous system (2004) Neuropathol. Appl. Neurobiol., 30, pp. 427-446Bucaretchi, F., Reinaldo, C.R.D., Hyslop, S., Madureira, P.R., de Capitani, E.M., Vieira, R.J., A clinico-epidemiological study of bites by spiders of the genus Phoneutria (2000) Rev. Inst. Med. Trop. São Paulo, 42, pp. 17-21Cameron, H.A., Woolley, C.S., McEwen, B.S., Gould, E., Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat (1993) Neuroscience, 56, pp. 337-344Choi, J.S., Kim, H.Y., Cha, J.H., Choi, J.Y., Chun, M.H., Lee, M.Y., Upregulation of vascular endothelial growth factor receptors Flt-1 and Flk-1 in rat hippocampus after transient forebrain ischemia (2007) J. Neurotrauma, 24, pp. 521-531da Cruz-Höfling, M.A., Zago, G.M., Melo, L.L., Raposo, C., C-FOS and n-NOS reactive neurons in response to circulating Phoneutria nigriventer spider venom (2007) Brain Res. Bull., 73, pp. 114-126da Cruz-Höfling, M.A., Raposo, C., Verinaud, L., Zago, G.M., Neuroinflammation and astrocytic reaction in the course of Phoneutria nigriventer (armed-spider) blood-brain barrier (BBB) opening (2009) Neurotoxicology, 30, pp. 636-646Dhondt, J., Peeraer, E., Verheyen, A., Nuydens, R., Buysschaert, I., Poesen, K., Van Geyte, K., Lambrechts, D., Neuronal FLT1 receptor and its selective ligand VEGF-B protect against retrograde degeneration of sensory neurons (2011) FASEB J., 25, pp. 1461-1473Dourado, D.M., Fávero, S., Matias, R., Carvalho, P.T.C., da Cruz-Höfling, M.A., Low-level laser therapy promotes vascular endothelial growth factor receptor-1 expression in endothelial and nonendothelial cells of mice gastrocnemius exposed to snake venom (2011) Photochem. Photobiol., 87, pp. 418-426Feistritzer, C., Mosheimer, B.A., Sturn, D.H., Bijuklic, K., Patsch, J.R., Wiedermman, C.J., Expression and function of the angiopoietin receptor Tie-2 in human eosinophils (2004) J. Allergy Clin. Immunol., 114 (5), pp. 1077-1084Forstreuter, F., Lucius, R., Mentlein, R., Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells (2002) J. Neuroimmunol., 132, pp. 93-98Gomez, M.V., Kalapothakis, E., Guatimosim, C., Prado, M.A., Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels (2002) Cell. Mol. Neurobiol., 22, pp. 579-588Hansen, T.M., Moss, A.J., Brindle, N.P., Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke (2008) Curr. Neurovasc. Res., 5, pp. 236-245Hoshino, M., Takahashi, M., Aoike, N., Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis (2001) J. Allergy Clin. Immunol., 107, pp. 295-301Islamov, R.R., Chintalgattu, V., Pak, E.S., Katwa, L.C., Murashov, A.K., Induction of VEGF and its Flt-1 receptor after sciatic nerve crush injury (2004) Neuroreport, 15, pp. 713-717Klausberger, T., Somogyi, P., Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations (2008) Science, 321, pp. 53-57Le Sueur, L., Kalapothakis, E., da Cruz-Höfling, M.A., Breakdown of the blood-brain barrier and neuropathological changes induced by Phoneutria nigriventer spider venom (2003) Acta Neuropathol. (Berl), 105, pp. 125-134Levison, S.W., Goldman, J.E., Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain (1993) Neuron, 10, pp. 201-212Luskin, M.B., Restricted proliferation and migration of post natally generated neurons derived from the forebrain subventricular zone (1993) Neuron, 11, pp. 173-189Olsson, A.K., Dimberg, A., Kreuger, J., Claesson-Welsh, L., VEGF receptor signaling in control of vascular function (2006) Nat. Rev. Mol. Cell Biol., 7, pp. 359-371Paxinos, G., Watson, C., (1998) The Rat Brain in Stereotaxic Coordinates, , Academic Press, San Diego, CAPoesen, K., Lambrechts, D., Van Damme, P., Dhondt, J., Bender, F., Frank, N., Bogaert, E., Carmeliet, P., Novel role for vascular endothelial growth factor (VEGF) receptor-1 and its ligand VEGF-B in motor neuron degeneration (2008) J. Neurosci., 28, pp. 10451-10459Rapôso, C., Zago, G.M., Silva, G.H., da Cruz-Höfling, M.A., Acute blood-brain barrier permeabilization in rats after systemic Phoneutria nigriventer venom (2007) Brain Res., 1149, pp. 18-29Ryu, J.K., Cho, T., Choi, H.B., Wang, Y.T., McLarnon, J.G., Microglial VEGF receptor response is an integral chemotactic component in Alzheimer's disease pathology (2009) J. Neurosci., 29, pp. 3-13Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M., Carmeliet, P., Role and therapeutic potential of VEGF in the nervous system (2009) Physiol. Rev., 89, pp. 607-648Saab, B.J., Georgiou, J., Nath, A., Lee, F.J., Wang, M., Michalon, A., Liu, F., Roder, J.C., NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory (2009) Neuron, 63, pp. 643-656Shibuya, M., Claesson-Welsh, L., Signal transduction by VEGF receptors in regulation of angiogenesis and lymph angiogenesis (2006) Exp. Cell Res., 312, pp. 549-560Solomon, R.W., Free and open source software for manipulation of digital images (2009) AJR Am. J. Roentgenol., 192, pp. w330-33
    corecore