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Abstract: Apart from its angiogenic and vascular permeation activity, the vascular 

endothelial growth factor (VEGF) has been also reported as a potent neuronal protector. 

Newborn rats with low VEGF levels develop neuron degeneration, while high levels induce 

protective mechanisms in several neuropathological conditions. Phoneutria nigriventer spider 

venom (PNV) disrupts the blood-brain barrier (BBB) and causes neuroinflammation in 

central neurons along with excitotoxic signals in rats and humans. All these changes are 

transient. Herein, we examined the expression of VEGF and its receptors, Flt-1 and Flk-1 

in the hippocampal neurons following envenomation by PNV. Adult and neonatal rats were 

evaluated at time limits of 2, 5 and 24 h. Additionally, BBB integrity was assessed by 

measuring the expression of occludin, β-catenin and laminin and neuron viability was 

evaluated by NeuN expression. VEGF, Flt-1 and Flk-1 levels increased in PNV-administered 

rats, concurrently with respective mRNAs. Flt-1 and Flk-1 immunolabeling was nuclear in 
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neurons of hippocampal regions, instead of the VEGF membrane-bound typical location. 

These changes occurred simultaneously with the transient decreases in BBB-associated 

proteins and NeuN positivity. Adult rats showed more prominent expressional increases of 

the VEGF/Flt-1/Flk-1 system and earlier recovery of BBB-related proteins than neonates. 

We conclude that the reactive expressional changes seen here suggest that VEGF and 

receptors could have a role in the excitotoxic mechanism of PNV and that such role would 

be less efficient in neonate rats.  

Keywords: hippocampus; junctional proteins; Neu-N; VEGF; VEGF receptors 

 

1. Introduction 

Spider venoms are rich sources of low molecular mass compounds with a wide range of 

pharmacological effects on ion channels, neurotransmitter receptors and transporters and consequently 

on synaptic transmission [1]. Phoneutria nigriventer spider venom (PNV) contains a plethora of 

pharmacologically active peptides which interfere with the physiology of the tetrodotoxin  

(TTX)-sensitive Na+ channels and block the Ca2+ and K+ channels. Therefore PNV-induced changes in 

the concentration of these ions affect the glutamate transporter, resulting in increased extracellular 

glutamate concentration [2,3]. Human victims of P. nigriventer spider bites and experimental animals 

display neuroexcitatory symptoms, which may include convulsion in severe cases, generally in 

children [4]. Studies have shown that PNV presence in the blood flow induces blood-brain barrier 

(BBB) breakdown in the hippocampus of rats [5] by enhanced transendothelial microtubule-mediated 

vesicular transport [6], or by displacement and/or decrease of proteins that control the paracellular 

pathway [7]. These effects are accompanied by transient neurotoxic manifestations. Despite clinical 

reports and experimental studies showing that P. nigriventer spiderenvenoming causes neurotoxic 

manifestations and induces permeation of the BBB, little is known about molecular mechanisms 

triggered in the brain shortly after envenomation. 

Increased BBB permeability has been associated with increased expression of angiogenic factors, 

the most notable of which is the vascular endothelial growth factor (VEGF) [8]. VEGF action results 

from binding to VEGFR1 and VEGFR2, also known as the Fms-like tyrosine kinase 1 (Flt-1) and fetal 

liver kinase 1/kinase insert domain receptor (Flk-1/KDR), respectively [9]. Increased VEGF levels 

have been described in brain repair [10] and in many pathological events affecting the central nervous 

system [11]. BBB disruption has been associated with pathologic angiogenesis in patients suffering 

from intractable temporal lobe epilepsy accompanied by overexpression of VEGF in neurons and Flk-1 

in endothelial cells [12]. It was thus considered of interest to investigate whether or not P. nigriventer 

experimental envenomation is accompanied by expressional changes in the VEGF/Flt-1/Flk-1 system. 

Since the hippocampus is rich in glutamate receptors and transporters and, as part of the temporal 

lobe is involved in the etiopathogenesis of convulsion-like events like those induced by PNV [4], it is 

important to focus on this region as a PNV target and seek possible ongoing molecular mechanisms 

coursing with the BBB permeation [13]. Thus far, studies on the BBB disruption by PNV have used 

adult rats, but age-related differences have been reported for humans [4] and recently reported for  
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rats [14]. Herein, a possible age-dependent differential response in relation to VEGF involvement is 

investigated using neonate and adult rats.  

This study will shed light on VEGF, Flt-1 and Flk-1 response generated by circulating  

P. nigriventer spider venom, running in parallel with the BBB breakdown. The fact that the effects are 

short-lived present good prospects for future studies aiming to promote transient BBB opening for 

therapeutic purposes. 

2. Results  

Irrespective of age, animals that were administered saline were normal in their feeding and 

behavioral habits in cages, whereas animals administered PNV displayed unevenly the toxic 

manifestations described by other authors, including piloerection, shivering, hypersalivation, 

respiratory distress, spastic hindlimb paralysis and tonic convulsion [5,13]. 

2.1. Blood-Brain Barrier-Associated Proteins: Occludin, β-Catenin, Laminin 

Occludin, β-catenin and laminin showed a relatively similar pattern of response to PNV 

envenomation. All decreased significantly and transiently in adult and neonate rats exposed to PNV, 

with such decreases occurring earlier in adults than in neonates, after which they exhibited recovery 

towards baseline (Figure 1A–C). 

Relative to respective control levels, occludin expression decreased significantly earlier in adults  

(2 h) than in neonates (5 h) and showed a 28% decrease (* p ≤ 0.05) compared with a 30% decrease in 

neonates (*** p ≤ 0.001); there was no difference between PNV vs. controls in protein expression at  

24 h (Figure 1A). PNV-administered adult rats showed immediate (2 h) 55% downregulation of  

β-catenin (* p ≤ 0.05), whereas downregulation in neonates occurred at 5 h and was 20% in magnitude 

(* p ≤ 0.05). These changes were transitory given that at 24 h protein expression was close to baseline 

for rats of both ages (Figure 1B). The reduction of laminin expression was higher (73%, * p ≤ 0.05) 

and earlier (2 h) in adult rats administered PNV than in matched neonates (5 h, 9% reduction,  

* p ≤ 0.05) (Figure 1C). Laminin expression was lower in adult rats in comparison with neonates for 

both control and PNV groups. There were age-related differences in laminin expression between  

PNV-treated rats at 2 h (### p ≤ 0.001) and 5 h (## p ≤ 0.01), as illustrated in Figure 1. 

2.2. Immunohistochemistry: PNV Increased VEGF, Flt-1, Flk-1 Immunostaining 

Figure 2 illustrates the VEGF, Flt-1 and Flk-1 staining pattern in the CA1 subfield of the 

hippocampus of adult rats taken at 5 h after i.p. administration of saline or PNV. Under control 

conditions (saline), VEGF was expressed in pyramidal neuron bodies and dendrites of the CA1, CA2 

and CA3 and granule neurons of the dentate gyrus (DG). Flt-1 and Flk-1 receptors were mainly 

expressed in the nuclei of pyramidal and granule neurons. Flt-1 staining was also seen in neuron 

processes. Flt-1 staining was stronger than that of Flk-1. Such a pattern was mirrored by CA2, CA3 

and DG hippocampal subfields for rats of both ages. 
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Figure 1. Immunoblots of occludin (A), β-catenin (B) and laminin (C). Phoneutria nigriventer 

(PNV) intra-peritoneal (i.p) injection induced significant decreases of all three proteins at  

2 h for adults, whereas at 5 h for neonates. * p ≤ 0.05 and *** p ≤ 0.001 denote significant 

decreases relative to controls; ## p ≤ 0.01 and ### p ≤ 0.001 indicate PNV-treated neonates 

with higher increase in laminin expression than their adult counterpart at 2 and 5 h.  

Student t-test; data are shown as means ± SEM. 
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Figure 2. CA1 subfield of 8–10-week-old rats: composite photomicrographs of 

hippocampal coronal sections stained for localization of anti-VEGF, anti-Flt-1 and  

anti-Flk-1 and using the immunoperoxidase technique. (A,C,E) are sections from controls 

(saline-treated) and (B,D,F) are from PNV-treated adult rats 5 h after i.p. injection. PNV 

increased the immunoreactivity of VEGF, Flt-1 and Flk-1. Py = stratum pyramidale;  

Or = stratum oriens; Rad = stratum radiatum; * = microvessels with perivascular edema. 

Scale Bars = 25 µm.  

 

The immunostaining of VEGF and Flt-1 and Flk-1 receptors was increased in all the subfields of 

hippocampus of PNV-treated rats of both ages. Figure 2 (panels A to F) depicts CA1 subfield of adult 

rats injected with saline and PNV as representative of the staining pattern exhibited by the other 

subfields. Consistently, anti-Flt-1 staining increased more prominently than VEGF and Flk-1. While 

several nuclei were Flk-1 negative (Figure 2F), practically all nuclei were Flt-1 positive (Figure 2D) 

and all neuron bodies were VEGF positive (Figure 2B). A similar staining pattern was observed in 

PVN-treated P14 rats (not shown). 
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It should be mentioned that the microcirculation vessels of PNV-administered animals presented 

perivascular edema in all the hippocampal subfields examined (Figure 2B,D,F as representatives) 

confirming previous quantitative studies [5,13,14]. 

2.3. Western Blotting and Real-Time Polymerase Chain Reaction (PCR): Temporal and  

Age-Related Differences 

VEGF, Flt-1 and Flk-1 expression in the hippocampus homogenate (comprising all ammonic 

subfields together, CA1, CA2, CA3) and DG showed time- and age-dependent differences in  

PNV-administered rats. 

2.3.1. VEGF, Flt-1 and Flk-1 Immunoblot Quantification 

In the hippocampus of PNV-treated adult rats, VEGF increased by 36% at 24 h, but not for neonates 

(Figure 3A; * p ≤ 0.05). VEGF expression, basally and after venom exposure, was higher in neonates 

than in adults, being 70% significantly higher at 2 h in neonates than in envenomed adults (## p ≤ 0.01) 

and 42% significantly higher at 5 h in neonates than control adults (# p ≤ 0.05). 

At 24 h, Flt-1 expression was 40% higher in PNV-treated P14 rats (*** p ≤ 0.001), whereas it was 

25% lower in PNV-treated adults at 2 h relative to baseline (Figure 3B; * p ≤ 0.05). At 24 h post-PNV,  

Flt-1 expression was higher in neonates than in adults (## p ≤ 0.01). Flk-1 expression level was 

upregulated by 50% in adult rats after 5 h, relative to baseline (* p ≤ 0.05, Figure 3C), and remained 

unchanged in neonates. 

Three-way ANOVA analysis revealed interaction between treatment vs. time variables so 

influencing the expression of VEGF and Flt-1 (* p ≤ 0.05). 

2.3.2. VEGF, Flt-1 and Flk-1 mRNAs (qPCR) 

In adult rats treated with PNV, VEGF mRNA showed a 27% increase at 5 h (Figure 4A), Flt-1 

mRNA expression showed a 15% decrease at 2 h, followed by increases of 15% and 5% at 5 h  

and 24 h, respectively (* p ≤ 0.05) and Flk-1 mRNA showed a 15% increase at 5 h (** p ≤ 0.01,  

Figure 4B,C). In envenomed neonates, only Flk-1 mRNA expression was 12% above control at 24 h 

(** p ≤ 0.01, Figure 4B,C). 

Age-related comparison showed that at 5 and 24 h VEGF mRNA expression in adult rats was, 

respectively, 12% and 18% above the level found in envenomed neonates (# p ≤ 0.05). In contrast,  

Flt-1 mRNA was higher in neonates than in adults at 2 and 5 h (# p ≤ 0.05) and the Flk-1  

mRNA level was higher in adults than in neonates at 2, 5 and 24 h (# p ≤ 0.05, ### p ≤ 0.001 and  
## p ≤ 0.01, respectively). 

The three-way ANOVA analysis showed that interaction between two variables influenced the third 

variable for expression of VEGF, Flt-1 and Flk-1 mRNAs (* p ≤ 0.05). 
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Figure 3. Western blot signals were densitometrically quantified and normalized to an 

internal standard (β-actin). VEGF (A), Flt-1 (B) and Flk-1 (C) expressions in PNV-treated 

samples (1.7 mg/kg) relative to control (CTR); * p ≤ 0.05 and *** p ≤ 0.001 indicate 

significant difference relative to respective controls; # p ≤ 0.05 and ## p ≤ 0.01 denote 

significant age-related differences between control (CTR) or PNV-treated groups at 

corresponding time-point. Student t-test; data were shown as means ± SEM. 
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Figure 4. Quantitative real-time polymerase chain reaction (PCR) analysis quantified and 

normalized to endogen control (GAPDH). VEGF (A), Flt-1 (B) and Flk-1 (C) mRNAs 

expression at time-points after PNV (1.7 mg/kg) or 0.9% saline peritoneal injection.  

* p ≤ 0.05 and ** p ≤ 0.01 indicate significant difference relative to respective controls;  
# p ≤ 0.05, ## p ≤ 0.01 and ### p ≤ 0.001, denote significant age-related differences between 

control (CTR) or PNV-treated groups at corresponding time-point. Student t-test; data were 

shown as means ± SEM. 

 

2.4. NeuN Immunohistochemistry and Western Blotting 

NeuN was expressed in the nuclei of pyramidal and granule neurons. Figure 5 illustrates anti-NeuN 

labeling in the hippocampal CA2 region of an adult rat treated with saline (panel A) and PNV (panel B). 

Figure 5C shows the time-course quantification of the density of pixels, expressed as percentage, of 

NeuN-labeled neurons in CA1, CA2, CA3 and DG regions of PNV-exposed rats and control rats.  

Anti-NeuN upregulation reached significance at 24 h only for neonates as follows: 88% in CA3  

(** p ≤ 0.01) > 65% in CA2 (* p ≤ 0.05) > 50% in DG (* p ≤ 0.05) > 46% in CA1 (* p ≤ 0.05). The 

NeuN level of envenomed adults was similar to their baseline values. Age-related differences 

demonstrated that neonate animals showed a tendency to exhibited higher levels of NeuN than adult 

rats which also reached significance at 24 h (# p ≤ 0.05; ## p ≤ 0.01; ### p ≤ 0.001). 
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Figure 5. NeuN labeling in the CA2 subfield of 8–10-week-old rats 5 h after i.p. injection 

of saline solution (A) or PNV (B). Py = stratum pyramidale; Or = stratum oriens;  

Rad = stratum radiatum; * = microvessels with perivascular edema. (C) Percentage of pixel 

density of NeuN-labeled neurons in different time points. (D) Immunoblots of NeuN in the 

hippocampus of i.p.-injected saline or PNV rats at 2, 5 and 24 h. * p ≤ 0.05 and ** p ≤ 0.01 

denote significant decrease of the nuclear marker relative to respective controls; # p ≤ 0.05,  
## p ≤ 0.01 and ### p ≤ 0.001) denote significant difference in NeuN expression between 

control (CTR) or PNV-treated groups at the corresponding time-point. Student t-test; data 

were shown as means ± SEM. Scale Bars = 25 µm. 
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Western blot analyses of NeuN showed an 18% decrease at 5 h (** p ≤ 0.01) and a 15% increase at  

24 h (** p ≤ 0.01) in PNV-treated neonate rats (Figure 5D). In adults, NeuN level was 20% downregulated 

at 2 h (** p ≤ 0.01), and was similar to baseline values at 5 h and 24 h. There were age-related differences 

between PNV-treated adult and neonate rats at 2 h and 5 h, with neonates showing higher levels than 

adults, as illustrated in Figure 5 (26%, ## p ≤ 0.01 and 20%, # p ≤ 0.05, respectively). 

3. Discussion 

Despite clinical and experimental studies having shown that P. nigriventer spider envenomation 

induces neuroexcitotoxic signals, and that the venom disrupts the blood-brain barrier, causes reactive 

astrogliosis, neuroinflammation, and activates neurons [4,5,15,16], little is known about regulatory 

mechanisms triggered in the brain shortly after envenomation.  

VEGF type A, studied herein, is a hypoxia-inducible glycoprotein with a pivotal pro-angiogenesis 

regulator role [17,18]. VEGF is promptly upregulated in response to minimal changes in oxygen [19] and 

is therefore considered to be a neurotrophic/neuroprotective cytokine against brain damage [17,20,21]. 

VEGF translational regulation is accomplished through endogenous mechanisms that activate the 

oxygen-regulated α-subunit of hypoxia-inducible transcription factor-1 (HIF-1) [22]. In rats, intoxication 

by PNV includes neuroexcitability, respiratory distress, and convulsion [5,13,14], which all together 

lead to the loss of energy homeostasis in the CNS. Although both neonate and adult rats presented 

similar signs of intoxication, the results of the present study suggest that, following exposure to PNV, 

neonate rats seem to be less capable than adult rats in activating VEGF, Flt-1 and Flk-1 promoters, to 

produce mRNAs with efficient translational activity. 

In fact, in neonates, only Flk-1 mRNA and Flt-1 protein increased, with this occurring later, at 24 h, 

while VEGF and Flt-1 mRNAs and VEGF and Flk-1 proteins remained unaltered. In contrast, in  

PNV-treated adult rats, VEGF mRNA and Flk-1 mRNA expression increased at 5 h, and Flt-1 mRNA 

increased at 5 and 24 h. The absence of changes and/or delayed response by envenomed neonates  

may suggest immature endogenous mechanism for activation of HIF-1 and translational regulation of 

VEGF, a hypothesis that requires further examination. Until now, studies of the effect of PNV on BBB 

have been conducted only with adult rats, but age-related differences have been recently reported for 

both rats [14,23] and humans [4]. 

The changes in the VEGF/Flt-1/Flk-1 system shown here were concurrent with hippocampal 

microvascular permeability, evidenced by perivascular edema and supported by expressional decreases 

of proteins associated with BBB, such as occludin, β-catenin and laminin. These findings are in line 

with previous quantitative results that have shown BBB disruption, vasogenic and cytotoxic edema in 

the hippocampus and cerebellum of rats given PNV [5,13,15,16]. Interestingly, redistribution of 

occludin, β-catenin and laminin occurred later in neonates (5 h) than in adults (2 h), and changes in 

their expression was in general less pronounced in neonates than in adults. Such findings substantiate 

the view that endogenous regulatory mechanisms against PNV toxicity seems to be more precarious in 

neonates than in adults. The data obtained in the present study agree with study showing that BBB in 

suckling rats, like P14, is immature and that differentiation of endothelial cells of brain vessels is not 

yet accomplished [24]. 
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Another study suggests that transcription factors such as HIF-1 are an upstream mediator of 

junctional proteins during hypoxia, which may involve VEGF induction and expression [25]. Like 

HIF-1, VEGF at the BBB is considered a permeability mediator [11]. This is in keeping with VEGF 

function as a potent inducer of vascular permeability during strokes, ischemia and other conditions of 

oxygen brain deprivation. Additionally, changes in BBB-associated proteins have been reported in 

similar pathological states; and perivascular edema has been related to BBB leakage [8,26]. Activated 

Flt-1 and Flk-1 receptors stimulate a variety of signaling pathways and extensive biological responses 

in endothelial cells [27], but not exclusively. Studies have shown VEGF participation in vascular, glial 

and neural cells, the glio-neurovascular unit (g-NVu), to which BBB is integrated [28,29]. In previous 

studies, the authors of the present study have shown that PNV activates neurons (Fos induction) and 

causes neuroinflammation (induction of pro-inflammatory cytokines) [15,16], hence demonstrating that 

the venom affects all cell types of the g-NVu. 

The reduction at 5 h of NeuN expression in the hippocampus of PNV-treated neonates followed by 

increase at 24 h (see WB- and immunochemistry-based data) could be associated with the upregulation 

of Flt-1 expression and Flk-1 mRNA at the same 24 h in these animals. The release of neurotrophic 

factors could result in a higher number of living neurons. VEGF signaling through Flt-1 and Flk-1 

receptors has been positively implicated in the synaptic plasticity during adulthood, developmental and 

post-developmental stages of neurons; also current knowledge refers the role of VEGF in both the 

synapse formation and elimination implying a differential interaction of the neurotrophic factor with 

different subtypes of neurons [30]. Whether these differential effects correlate with the expression of 

specific sets of VEGF receptors in groups of neurons was not investigated yet. NeuN is a central 

element of the neuronal nuclear matrix that is only expressed in post-mitotic neurons [31]; it has been 

used as a marker of mature neurons and neuron viability [32]. 

Pyramidal neurons are the most abundant neuronal type located in forebrain structures, including 

the cerebral cortex, hippocampus and amygdala. Their location in the forebrain region indicates 

involvement with higher cognitive function. Conversely, the dentate gyrus of the hippocampus is a key 

relay station, common to all animals, which controls the transfer of information from the entorhinal 

cortex to the hippocampus proper [33,34]. Dentate gyrus granule neurons play a seminal role in  

this process, as they receive and integrate entorhinal synaptic inputs. The complex is involved in 

seizure-like events. Both pyramidal dendrites and granule dendrites possess N-methyl-D-aspartate 

(NMDA) receptors, and Na+ and Ca2+ channels, and therefore the possibility of being affected by ion 

channel acting-neuropeptides of PNV [3] is not excluded. Neuropeptides of PNV contain a calcium 

channel antagonist that blocks glutamate exocytosis but also inhibits glutamate uptake [35–37]  

in synaptosomes. VEGF modulates NMDA receptor activity in cerebellar granule cells through  

Src-family kinases before synapse formation [38] reduces calcium influx via inhibition of the Ca2+ 

channels in rat hippocampal neurons [39] and controls epileptic activity by influencing glutamatergic 

and gamma-aminobutyric acid (GABA)ergic neurotransmission [40,41]. Taking into account the  

fact that pyramidal and granule neurons NeuN(+) are VEGF(+), Flt-1(+) and Flk-1(+) cells, and 

considering the pharmacological characteristics of PNV, the changes in the expression of these 

proteins in the course of envenomation may represent their potential involvement in the hippocampus 

at the initial phases of envenomation by PNV. However, such supposition requires examination since 

the findings here found could be causal in nature. 
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Finally, the unexpected reactivity of anti-Flt-1 and Flk-1 in the nuclei of neurons is interesting. Like 

VEGF, the receptors typically exhibit a membrane-bound location. However, several studies have 

demonstrated that receptors can be translocated to the nucleus in both physiological and pathological 

conditions. Translocation of functional growth factor receptors to the cell nucleus has been considered 

a novel mechanism for growth factor regulation. Ligand binding can internalize the activated receptors 

to downregulate signaling through degradation of the ligand/receptor complex (ubiquitinylation) or  

via endocytosis of the receptor itself [42,43]. Although unclear, it is possible that the age-related 

differences in the expression of VEGF and its tyrosine kinase receptors in response to PNV observed 

herein may reflect differences in the internalization and subsequent nuclear trafficking of the receptors, 

thereby inpacting cellular processes in the hippocampal tissue. 

4. Experimental Section 

4.1. Animals and Venom 

Male Wistar rats (Rattus norvegicus) aged three weeks were obtained from the Multidisciplinary 

Center for Biological Investigation at the State University of Campinas (CEMIB/Unicamp). They were 

housed under standard animal colony conditions, 5 per cage, at 23 °C on a 12 h light/dark cycle, with 

lights on at 6 a.m. and with free access to food and water until reaching 8–10 weeks old. At least 24 h 

before the experiment, the animals were transported in their home cages from the animal colony to the 

laboratory and allowed to habituate. Male Wistar rats on post-natal day 14 (P14) were taken directly 

from CEMIB to the laboratory, and experiments were done in the next day. Lyophilized P. nigriventer 

crude venom (PNV) was stored at −20 °C, until use.  

4.2. Envenoming Procedure 

All experimental procedures were approved by the Institutional Committee for Ethics in Animal 

Use (CEUA/IB/Unicamp, protocol n. 2403-1) and the experiments were carried out according to the 

established by the Brazilian Society of Laboratory Animal Science (SBCAL) guidelines for animal 

use. P14 animals (n = 4–6) and 8–10 weeks old animals (n = 4–6) received a single intraperitoneal 

(i.p.) injection of PNV (1.7 mg/kg in 0.5 mL of 0.9% sterile saline), while the control group was  

given the same volume of vehicle [14]. Two, five and 24 h after saline or PNV i.p. administration, the 

animals were anesthetized and the hippocampus immediately removed. Neonate rats were used for 

comparison with adult rats, since severe accidents by Phoneutria generally occurs in children [4]. 

Time limits of 2, 5 and 24 h corresponded to periods of peak of intoxication, beginning of clinical 

recovery and no sign of intoxication at all, respectively [14]. 

4.3. Immunohistochemistry and Image Analysis 

Anti-VEGF (1:50, mouse monoclonal, sc-7269), anti-Flt-1 (1:500, rabbit polyclonal, sc-316) and 

Flk-1 (1:50, rabbit polyclonal, sc-315), all from Santa Cruz Biotechnology (Santa Cruz, CA, USA), 

and anti-neuronal nuclear antigen (NeuN) (1:1000, rabbit polyclonal, ABN78, Millipore, Billerica, 

MA, USA) immunohistochemistry were performed in coronal sections of the hippocampus, as 
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previously described [14]. Negative control was done with 1% PBS-bovine serum albumin (BSA) but 

without the primary antibody. 

NeuN levels were determined as previously described [14], using the free access GIMP 2.6.4 

software (GNU Image Manipulation Program, CNE, Free Software Foundation, Boston, MA, USA). 

4.4. Western Blotting (WB) 

After 2, 5 and 24 h of PNV or saline injection, the animals (n = 6/time), were anaesthetized by CO2 

inhalation and killed by decapitation. The hippocampi from each group were quickly dissected and 

homogenized in an extraction buffer (10 mM EDTA, 2 mM PMSF, 100 mMNaF, 10 mM sodium 

pyrophosphate, 10 mM NaVO4, 0.1 mg of aprotinin/mL and 100 mMTris, pH 7.4). Cellular protein 

was quantified by Bradford assay (Bio-Rad, Hercules, CA, USA), then 40 µg of the cleared lysates 

were separated on 8% (β-catenin, Flt-1, Flk-1, laminin and occludin) or 12% (VEGF and NeuN)  

SDS-PAGE and electrotransferred onto nitrocellulose membrane (BioRad). Total cell lysates were 

prepared and analyzed by Western blotting, as previously described [7]. Antibodies were specific for 

rabbit polyclonal antibody against Flt-1 (1:500, sc-316), Flk-1 (1:250, sc-315, Santa Cruz, CA, 

USA),laminin (1:500, L9393, Sigma Aldrich, St. Louis, MO, USA), NeuN (1:2000, ABN78, Millipore, 

Billerica, MA, USA); mouse monoclonal antibody against β-Catenin (1:600, sc-7963) and VEGF (1:500, 

sc-7269) (Santa Cruz, CA, USA), β-actin (1:1,000, A2228, Sigma Aldrich) and goat monoclonal 

antibody against occludin (1:500, sc-8144, Santa Cruz, CA, USA). Bands were visualized using 

chemiluminescence reagent (Thermo Scientific, Waltham, MA, USA). For quantification, the density 

of pixels of each band was determined by the NIH Image J 1.45s software (available at ftp from 

zippy.nimh.nih.gov/ or from http://rsb.info.nih.gov/nih-image; developed by Wayne Rasband, NIH, 

Bethesda, MD, USA). The results of each protein were confirmed in three sets of experiments, and 

data were normalized using the respective loading controls. Values were normalized to the 

corresponding value for β-actin and expressed as a ratio. 

4.5. RNA Isolation and Real-Time Quantitative Polymerase Chain Reaction (qPCR) 

Total RNA was isolated from the hippocampus of each group using trizol reagent (Life 

Technologies, Gaithersburg, MD, USA). Primers used in this study and their respective assay 

identification numbers in the Applied Biosystem catalog were: VEGF: Rn01511601_m1, Flt-1: 

Rn00570815_m1, Flk-1: Rn00564986_m1. The levels of VEGF, Flt-1 and Flk-1 mRNA were 

quantitated relative to amplicon-specific standard curves by qPCR using 50 ng total RNA in triplicate 

and analyzed on an ABI Prism 7500 sequence detector, using a TaqMan® Universal Master Mix. The 

optimal concentrations of cDNA and primers, as well as the maximum efficiency of amplification, 

were obtained by five-point, two-fold dilution curve analysis for each gene. Each PCR contained  

3.0 ng of reverse-transcribed RNA, 200 nM of each specific primer, SYBR SAFE PCR master mix, 

and RNase-free water to a final volume of 20 µL. All samples were run in triplicate with water as a  

no-template control and GAPDH as an endogenous control. Real-time data were analyzed using the 

Sequence Detection System 1.7 (Applied Biosystems, Carlsbad, CA, USA). 
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4.6. Statistics 

Student’s t-test was used for comparisons between PNV and control data. Additionally, three-way 

ANOVA test was used to determine the influence of three variables (treatment (control and PNV), age 

(P14 and 8–10 weeks) and time (2, 5, and 24 h)) on the resulting outcome. The data were expressed as 

the mean ± SEM; a p ≤ 0.05 indicated significance. 

5. Conclusions 

Overall, the data showed that the changes in the expression of VEGF, Flt-1, Flk-1 and their 

respective mRNAs in the hippocampus of rats administered with the venom of P. nigriventer spider 

were time- and age-dependent. These changes were concurrent with decreased proteins associated  

with BBB, occludin, β-catenin and laminin, simultaneously with the appearance of perivascular edema. 

Neonate rats seem to be more susceptible than adult rats. PNV-treated neonate rats showed increased 

NeuN expression. All the expressional changes showed age-related pace, with adult response more 

precocious (2 h) than that of neonates (5 h). Together, the findings suggest an interdependent and 

suggestively time-coordinated sequence of events. VEGF, Flt-1, Flk-1 and NeuN were expressed by 

pyramidal and granule neurons. Flt-1 and Flk-1 atypically exhibited nuclear translocation, with this 

hypothetically being a potential mechanism for regulating VEGF. Studies have shown that PNV 

induces excitotoxic signs which follow BBB breakdown and probably central energy unbalance. PNV 

possesses ion channel-acting neuropeptides that interfere with neurotransmission and glutamate 

handling. Future pharmacological studies are needed to reveal which interdependent signaling 

pathways underlie VEGF and the intracellular tyrosine kinase domains of Flt-1 and Flk-1 in the 

neurotoxic manifestations elicited by PNV. This will elucidate the actual role of VEGF in PNV-related 

hippocampal changes. 
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