6 research outputs found

    ML-based PBCH symbol detection and equalization for 5G Non-Terrestrial Networks

    Full text link
    This paper delves into the application of Machine Learning (ML) techniques in the realm of 5G Non-Terrestrial Networks (5G-NTN), particularly focusing on symbol detection and equalization for the Physical Broadcast Channel (PBCH). As 5G-NTN gains prominence within the 3GPP ecosystem, ML offers significant potential to enhance wireless communication performance. To investigate these possibilities, we present ML-based models trained with both synthetic and real data from a real 5G over-the-satellite testbed. Our analysis includes examining the performance of these models under various Signal-to-Noise Ratio (SNR) scenarios and evaluating their effectiveness in symbol enhancement and channel equalization tasks. The results highlight the ML performance in controlled settings and their adaptability to real-world challenges, shedding light on the potential benefits of the application of ML in 5G-NTN

    Flexible Payload Configuration for Satellites using Machine Learning

    Full text link
    Satellite communications, essential for modern connectivity, extend access to maritime, aeronautical, and remote areas where terrestrial networks are unfeasible. Current GEO systems distribute power and bandwidth uniformly across beams using multi-beam footprints with fractional frequency reuse. However, recent research reveals the limitations of this approach in heterogeneous traffic scenarios, leading to inefficiencies. To address this, this paper presents a machine learning (ML)-based approach to Radio Resource Management (RRM). We treat the RRM task as a regression ML problem, integrating RRM objectives and constraints into the loss function that the ML algorithm aims at minimizing. Moreover, we introduce a context-aware ML metric that evaluates the ML model's performance but also considers the impact of its resource allocation decisions on the overall performance of the communication system.Comment: in review for conferenc

    Supervised Learning Based Real-Time Adaptive Beamforming On-board Multibeam Satellites

    Full text link
    Satellite communications (SatCom) are crucial for global connectivity, especially in the era of emerging technologies like 6G and narrowing the digital divide. Traditional SatCom systems struggle with efficient resource management due to static multibeam configurations, hindering quality of service (QoS) amidst dynamic traffic demands. This paper introduces an innovative solution - real-time adaptive beamforming on multibeam satellites with software-defined payloads in geostationary orbit (GEO). Utilizing a Direct Radiating Array (DRA) with circular polarization in the 17.7 - 20.2 GHz band, the paper outlines DRA design and a supervised learning-based algorithm for on-board beamforming. This adaptive approach not only meets precise beam projection needs but also dynamically adjusts beamwidth, minimizes sidelobe levels (SLL), and optimizes effective isotropic radiated power (EIRP).Comment: conference pape

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Multibeam Beamforming for Direct Radiating Arrays in Satellite Communications Using Genetic Algorithm

    No full text
    Recent advancements in onboard satellite communication have enhanced the capability of dynamically modifying the radiation pattern of a Direct Radiating Array (DRA). This is crucial not only for conventional communication satellites like Geostationary Orbit (GEO) but also for those in lower orbits such as Low Earth Orbit (LEO). Key design factors include the number of beams, beamwidth, Effective Isotropic Radiated Power (EIRP), and Side Lobe Level (SLL) for each beam. However, a challenge arises in multibeam scenarios when trying to simultaneously meet requirements for the aforementioned design factors which are reflected as uneven power distribution. This leads to over-saturation, especially in centrally located antenna elements due to the activation times per beam, commonly referred to as activation instances. In response to this challenge, this paper presents a method to balance the activation instances across antenna elements for each required beam. Our focus is on beams operating at 19 GHz on a CubeSat positioned 500 km above the Earth’s surface. We introduce a Genetic Algorithm (GA)-based algorithm to optimize the beamforming coefficients by modulating the amplitude component of the weight matrix for each antenna element. A key constraint of this algorithm is a limit on activation instances per element, which avoids over-saturation in the Radio Frequency (RF) chain. Additionally, the algorithm accommodates beam requirements such as beamwidth, SLL, pointing direction, and total available power. With the previous key design factors, the algorithm will optimize the required genes to address the desired beam characteristics and constraints. We tested the algorithm’s effectiveness in three scenarios using an 8×88\times 8 DRA patch antenna with circular polarization, arranged in a triangular lattice. The results demonstrate that our algorithm not only meets the required beam pattern specifications but also ensures a uniform activation distribution across the antenna array

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    No full text
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.13Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt
    corecore