1,804 research outputs found

    Plasma Interaction With Microbes

    Get PDF
    The germicidal effects of a non-equilibrium atmospheric pressure plasma generated by a novel resistive barrier discharge on representatives of the two classes of bacteria (Gram-negative and Gram-positive) are discussed. The plasma exposure, while being lethal to both bacterial classes, also produced gross structural damage in the Gram-negative E. coli while none was observed in the more structurally robust Gram-positive Bacillus subtilis. An electrophysical process involving the role of the electrostatic tension on a charged body in a plasma is invoked to explain both observations. Since the efficacy of this electrophysical process depends not only on the tensile strength of the bacterial cell wall but also on its shape and texture, the need for more experimental studies, using a wide range of bacteria belonging to various morphological groups, is suggested. Ways to further test the validity of this electrophysical lysis mechanism for Gram-negative bacteria on one hand, and also to extend its operation to the more robust Gram-positive bacteria on the other, are suggested

    Braking the Gas in the beta Pictoris Disk

    Full text link
    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in the midplane and larger at higher altitudes), ions can be slowed down to satisfy the observed velocity constraints. For neutral gas to brake the coupled ion fluid, we find the minimum required mass to be ≈\approx 0.03 M_\earth, consistent with observed upper limits of the hydrogen column density, and substantially reduced relative to previous estimates. Our results favor a scenario in which metallic gas is generated by grain evaporation in the disk, perhaps during grain-grain collisions. We exclude a primordial origin for the gas, but cannot rule out the possibility of its production by falling evaporating bodies near the star. We discuss the implications of this work for observations of gas in other debris disks.Comment: 19 pages, 12 figures, emulateapj. Accepted for publication in Ap

    Numerical simulation of failure mechanisms of a typical dead end anchorage of post-tensioned suspended slabs

    Get PDF
    The post-tensioning loads in suspended slabs are transferred to concrete mass via an anchorage assembly that consists in a strand and anchor component. Many failures have occurred in the dead-end anchors of post-tensioned (PT) suspended slabs during the post-tensioning process which need a closer study. This study attemps to simulate the crack propagation near the deadend anchors of PT suspended slabs. The bond behaviour of strand and wire is develioped using experimental test. Interface element is used to model the bond between concrete and strand/ wire. The analysis is conducted using displacement controlled procedure. The result shows that the crack on the concrete is concentrated near the dead-end anchors

    The effect of thermophoresis on the discharge parameters in complex plasma experiments

    Full text link
    Thermophoresis is a tool often applied in complex plasma experiments. One of the usual stated benefits over other experimental tools is that changes induced by thermophoresis neither directly depend on, nor directly influence, the plasma parameters. From electronic data, plasma emission profiles in the sheath, and Langmuir probe data in the plasma bulk, we conclude that this assumption does not hold. An important effect on the levitation of dust particles in argon plasma is observed as well. The reason behind the changes in plasma parameters seems to be the change in neutral atom density accompanying the increased gas temperature while running at constant pressure.Comment: 14 pages, 12 figure

    Use of recycled concrete aggregates in sustainable structural concrete applications

    Get PDF
    The increasing difficulty in securing natural coarse and fine aggregates for the production of concrete coupled with the environmental issues and social costs of unlimited extraction of natural aggregates makes the usage of recycled aggregate concrete (RCA) in the construction industry of prime importance. However the full use of the material can be justified only through structural applications. Engineers are reluctant to use RCA in structural applications due to lack of design information. A brief review of the recent literature on Recycled Aggregate Concrete (RCA) used as a structural material is reported in this paper. It is found that the most of the research studies conducted up to now are mostly based on material properties rather than investigation of the RCA and its performance as a structural material. Major issues and problems associated with RCA concrete compared to normal concrete are identified in the paper

    Luminescence of Cu2ZnSnS4 polycrystals described by the fluctuating potential model

    Get PDF
    The growth of Cu 2ZnSnS4 (CZTS) polycrystals from solid state reaction over a range of compositions, including the regions which produce the highest efficiency photovoltaic devices, is reported. X-ray measurements confirm the growth of crystalline CZTS. Temperature and intensity dependent photoluminescence (PL) measurements show an increase in the energy of the main CZTS luminescence peak with both increasing laser power and increasing temperature. Analysis of the PL peak positions and intensity behavior demonstrates that the results are consistent with the model of fluctuating potentials. This confirms that the polycrystals are heavily doped with the presence of a large concentration of intrinsic defects. The behavior of the main luminescence feature is shown to be qualitatively similar over a broad range of compositions although the nature and amount of secondary phases vary significantly. The implications for thin-film photovoltaic devices are discussed

    Gender-Related Differences in the Prevalence of Cardiovascular Disease Risk Factors and their Correlates in Urban Tanzania.

    Get PDF
    \ud Urban areas in Africa suffer a serious problem with dual burden of infectious diseases and emerging chronic diseases such as cardiovascular diseases (CVD) and diabetes which pose a serious threat to population health and health care resources. However in East Africa, there is limited literature in this research area. The objective of this study was to examine the prevalence of cardiovascular disease risk factors and their correlates among adults in Temeke, Dar es Salaam, Tanzania. Results of this study will help inform future research and potential preventive and therapeutic interventions against such chronic diseases. The study design was a cross sectional epidemiological study. A total of 209 participants aged between 44 and 66 years were included in the study. A structured questionnaire was used to evaluate socioeconomic and lifestyle characteristics. Blood samples were collected and analyzed to measure lipid profile and fasting glucose levels. Cardiovascular risk factors were defined using World Health Organization criteria. The age-adjusted prevalence of obesity (BMI > or = 30) was 13% and 35%, among men and women (p = 0.0003), respectively. The prevalence of abdominal obesity was 11% and 58% (p < 0.0001), and high WHR (men: >0.9, women: >0.85) was 51% and 73% (p = 0.002) for men and women respectively. Women had 4.3 times greater odds of obesity (95% CI: 1.9-10.1), 14.2-fold increased odds for abdominal adiposity (95% CI: 5.8-34.6), and 2.8 times greater odds of high waist-hip-ratio (95% CI: 1.4-5.7), compared to men. Women had more than three-fold greater odds of having metabolic syndrome (p = 0.001) compared to male counterparts, including abdominal obesity, low HDL-cholesterol, and high fasting blood glucose components. In contrast, female participants had 50% lower odds of having hypertension, compared to men (95%CI: 0.3-1.0). Among men, BMI and waist circumference were significantly correlated with blood pressure, triglycerides, total, LDL-, and HDL-cholesterol (BMI only), and fasting glucose; in contrast, only blood pressure was positively associated with BMI and waist circumference in women. The prevalence of CVD risk factors was high in this population, particularly among women. Health promotion, primary prevention, and health screening strategies are needed to reduce the burden of cardiovascular disease in Tanzania.\u

    Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability

    Get PDF
    An AM60 magnesium alloy nanocomposite reinforced with 1 wt % of AlN nanoparticles was prepared using an ultrasound (US) assisted permanent-mould indirect-chill casting process. Ultrasonically generated cavitation and acoustic streaming promoted de-agglomeration of particle clusters and distributed the particles throughout the melt. Significant grain refinement due to nucleation on the AlN nanoparticles was accompanied by an exceptional improvement in properties: yield strength increased by 103%, ultimate tensile strength by 115%, and ductility by 140%. Although good grain refinement was observed, the large nucleation undercooling of 14 K limits further refinement because nucleation is prevented by the formation of a nucleation-free zone around each grain. To assess the industrial applicability and recyclability of the nanocomposite material in various casting processes, tests were performed to determine the effect of remelting on the microstructure. With each remelting, a small percentage of effective AlN nanoparticles was lost, and some grain growth was observed. However, even after the third remelting, excellent strength and ductility was retained. According to strengthening models, enhanced yield strength is mainly attributed to Hall-Petch strengthening caused by the refined grain size. A small additional contribution to strengthening is attributed to Orowan strengthening
    • …
    corecore