1,203 research outputs found
Bar pattern speed evolution over the last 7 Gyr
The tumbling pattern of a bar is the main parameter characterising its
dynamics. From numerical simulations, its evolution since bar formation is
tightly linked to the dark halo in which the bar is formed through dynamical
friction and angular momentum exchange. Observational measurements of the bar
pattern speed with redshift can restrict models of galaxy formation and bar
evolution. We aim to determine, for the first time, the bar pattern speed
evolution with redshift based on morphological measurements. We have selected a
sample of 44 low inclination ringed galaxies from the SDSS and COSMOS surveys
covering the redshift range 0 <z< 0.8 to investigate the evolution of the bar
pattern speed. We have derived morphological ratios between the deprojected
outer ring radius (R_{ring}) and the bar size (R_{bar}). This quantity is
related to the parameter {\cal R}=R_{CR}/R_{bar} used for classifiying bars in
slow and fast rotators, and allow us to investigate possible differences with
redshift. We obtain a similar distribution of at all redshifts. We do not
find any systematic effect that could be forcing this result. The results
obtained here are compatible with both, the bulk of the bar population (~70%)
being fast-rotators and no evolution of the pattern speed with redshift. We
argue that if bars are long-lasting structures, the results presented here
imply that there has not been a substantial angular momentum exchange between
the bar and halo, as predicted by numerical simulations. In consequence, this
might imply that the discs of these high surface-brightness galaxies are
maximal.Comment: Accepted for publication in A&
Structural properties of disk galaxies I. The intrinsic ellipticity of bulges
(Abridged) A variety of formation scenarios was proposed to explain the
diversity of properties observed in bulges. Studying their intrinsic shape can
help in constraining the dominant mechanism at the epochs of their assembly.
The structural parameters of a magnitude-limited sample of 148 unbarred S0--Sb
galaxies were derived in order to study the correlations between bulges and
disks as well as the probability distribution function (PDF) of the intrinsic
equatorial ellipticity of bulges. It is presented a new fitting algorithm
(GASP2D) to perform the two-dimensional photometric decomposition of galaxy
surface-brightness distribution. This was assumed to be the sum of the
contribution of a bulge and disk component characterized by elliptical and
concentric isophotes with constant (but possibly different) ellipticity and
position angles. Bulge and disk parameters of the sample galaxies were derived
from the J-band images which were available in the Two Micron All Sky Survey.
The PDF of the equatorial ellipticity of the bulges was derived from the
distribution of the observed ellipticities of bulges and misalignments between
bulges and disks. Strong correlations between the bulge and disk parameters
were found. About 80% of bulges in unbarred lenticular and
early-to-intermediate spiral galaxies are not oblate but triaxial ellipsoids.
Their mean axial ratio in the equatorial plane is = 0.85. There is not
significant dependence of their PDF on morphology, light concentration, and
luminosity. The interplay between bulge and disk parameters favors scenarios in
which bulges assembled from mergers and/or grew over long times through disk
secular evolution. But all these mechanisms have to be tested against the
derived distribution of bulge intrinsic ellipticities.Comment: 24 pages, 13 figures, accepted for publication in A&A, corrected
proof
The relation between bar formation, galaxy luminosity, and environment
We derive the bar fraction in three different environments ranging from the
field to Virgo and Coma clusters, covering an unprecedentedly large range of
galaxy luminosities (or, equivalently, stellar masses). We confirm that the
fraction of barred galaxies strongly depends on galaxy luminosity. We also show
that the difference between the bar fraction distributions as a function of
galaxy luminosity (and mass) in the field and Coma cluster are statistically
significant, with Virgo being an intermediate case. We interpret this result as
a variation of the effect of environment on bar formation depending on galaxy
luminosity. We speculate that brighter disk galaxies are stable enough against
interactions to keep their cold structure, thus, the interactions are able to
trigger bar formation. For fainter galaxies the interactions become strong
enough to heat up the disks inhibiting bar formation and even destroying the
disks. Finally, we point out that the controversy regarding whether the bar
fraction depends on environment could be resolved by taking into account the
different luminosity ranges of the galaxy samples studied so far.Comment: 4 pages, 2 figures. To appear in the proceedings of EWASS 2012
Special Session 4, Structure of galaxy disks shaped by secular evolution and
environmental processes, ed. P. Di Matteo and C. Jog, Memorie della Societ\`a
Astronomica Italiana Supplement Serie
The intrinsic three-dimensional shape of galactic bars
We present the first statistical study on the intrinsic three-dimensional
(3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We
use the galaXYZ code to derive the bar intrinsic shape with a statistical
approach. The method uses only the geometric information (ellipticities and
position angles) of bars and discs obtained from a multi-component photometric
decomposition of the galaxy surface-brightness distributions. We find that bars
are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of
oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A
semiaxis ratio) of the bars in our sample is 0.34, which matches well the
typical intrinsic flattening of stellar discs at these galaxy masses. We
demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars
depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies
are thicker and more circular than those in less massive spirals). The bar
intrinsic shape correlates with bulge, disc, and bar parameters. In particular
with the bulge-to-total (B/T) luminosity ratio, disc g-r color, and central
surface brightness of the bar, confirming the tight link between bars and their
host galaxies. Combining the probability distributions of the intrinsic shape
of bulges and bars in our sample we show that 52% (16%) of bulges are thicker
(flatter) than the surrounding bar at 1 level. We suggest that these
percentages might be representative of the fraction of classical and disc-like
bulges in our sample, respectively.Comment: 18 pages, 11 figures, accepted for publication in MNRA
Peanut-shaped bulges in face-on disk galaxies
We present high resolution absorption-line spectroscopy of 3 face-on
galaxies, NGC 98, NGC 600, and NGC 1703 with the aim of searching for
box/peanut (B/P)-shaped bulges. These observations test and confirm the
prediction of Debattista et al. (2005) that face-on B/P-shaped bulges can be
recognized by a double minimum in the profile of the fourth-order Gauss-Hermite
moment h_4. In NGC 1703, which is an unbarred control galaxy, we found no
evidence of a B/P bulge. In NGC 98, a clear double minimum in h_4 is present
along the major axis of the bar and before the end of the bar, as predicted. In
contrast, in NGC 600, which is also a barred galaxy but lacks a substantial
bulge, we do not find a significant B/P shape.Comment: 4 pages, 1 figure. To appear in "Tumbling, twisting, and winding
galaxies: Pattern speeds along the Hubble sequence", E. M. Corsini and V. P.
Debattista (eds.), Memorie della Societa` Astronomica Italian
Metallicity inhomogeneities in local star-forming galaxies as sign of recent metal-poor gas accretion
We measure the oxygen metallicity of the ionized gas along the major axis of
seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14,
show 0.5 dex metallicity decrements in inner regions with enhanced
star-formation activity. This behavior is similar to the metallicity drop
observed in a number of local tadpole galaxies by Sanchez Almeida et al. (2013)
and interpreted as showing early stages of assembling in disk galaxies, with
the star formation sustained by external metal-poor gas accretion. The
agreement with tadpoles has several implications: (1) it proves that galaxies
other than the local tadpoles present the same unusual metallicity pattern. (2)
Our metallicity inhomogeneities were inferred using the direct method, thus
discarding systematic errors usually attributed to other methods. (3) Taken
together with the tadpole data, our findings suggest a threshold around one
tenth the solar value for the metallicity drops to show up. Although galaxies
with clear metallicity drops are rare, the physical mechanism responsible for
them may sustain a significant part of the star-formation activity in the local
Universe. We argue that the star-formation dependence of the mass-metallicity
relationship, as well as other general properties followed by most local disk
galaxies, are naturally interpreted as side effects of pristine gas infall.
Alternatives to the metal poor gas accretion are examined too.Comment: Accepted for publication in ApJ. 10 pages. 5 Fig
- …